
Chapter 2

Numerical Integration – also

called quadrature

The goal of numerical integration is to approximate

∫ b

a

f(x)dx

numerically.

This is useful for ’difficult’ integrals like

sin(x)

x
; sin(x2);

√
1 + x4

Or worse still for multiple-dimensional integrals where ”multi” could be 2 or

20 or 106 etc.

2.1 A basic principle

If we cannot do
∫ b

a
f(x)dx, we approximate f(x) with a function we can in-

tegrate.

(usually by a polynomial ie f(x) = ax + bx2 + cx3 + ....) When we integrate

a function we calculate the area below the curve.
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DRAWINGS

2.2 Trapezoidal Rule

Approximate the function between ’a’ and ’b’ by a line segment ie

f(x) = cx

DRAWING

area under line segment = 1
2

area of a trapezoidal

area of a trapezoidal = base * height

= h* [f(a)+f(b)]
1
2

area of a trapezoidal = h
2
[f(a) + f(b)]

DRAWING

∫ b

a

f(x)dx ≈ h

2
[f(a) + f(b)]

Which gives us the Trapezoidal Rule.

∫ b

a

f(x)dx ≈ b − a

2
[f(a) + f(b)]

What did we miss?

DRAWING

2.2.1 Extending the Trapezoidal Rule

Before we took one giant step across the interval we now break this into ’n’

small steps of size h, where

h =
b − a

n

Then we apply the trapezoidal rule at each step

DRAWING
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f(x) approximated by a series of polynomials - one for each step.

Apply trapezoidal rule to each segment and add

T = trap. area

= 1
2
h(y0 + y1) + 1

2
h(y1 + y2) + 1

2
h(y2 + y3) + ... + 1

2
h(yn−1 + yn)

= h(1
2
y0 + y1 + y2 + y3 + ... + yn−1 + 1

2
yn)

but we have

y0 = f(a); y1 = f(x1); y2 = f(x2); ... yn = f(b)

And we now have the extend trapezoidal rule

= h(
1

2
f(a) + f(x1) + f(x2) + f(x3) + ... + f(xn−1) +

1

2
f(b))

EXAMPLE

2.2.2 Error estimates

In any subinterval, say [xk−1, xk]
∫ xk

xk−1
f(x)dx approximate by trapezoidal rule

ie
∫ xk

xk−1

f(x)dx ≈ Tk =
h

2
[f(xk−1) + f(xk)]

Q: whats the size of the error on this interval?

∫ xk

xk−1

f(x)dx = Tk + err(x)

f(x) was approximated by a polynomial ∼ f(x) → x+a. We can write f(x)

as a Taylor expansion about a nearby pt. xk− 1
2

let x ∈ [xk−1, xk]

f(x) = f(xk− 1
2
) + (x − xk− 1

2
)f

′

(xk− 1
2
)

+
(x−x

k−
1
2
)

2!
f

′′

(xk− 1
2
) + ...
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and if x = xk

(xk − xk−1) = h → (xk − xk− 1
2
) =

h

2

The approximating polynomial is of degree 1 ∼ x + a

it accurately represents f(x) up to the first derivative but not beyond:

d2(x + a)

dx2
= 0 ⇒ cannot know f

′′

(x)

f(x) ≈ f(xk− 1
2
) + (x − xk− 1

2
)f

′

(xk− 1
2
)

and the error starts at the next term

error =
(x − xk− 1

2
)2

2!
f

′′

(xk− 1
2
)

We cannot know f
′′

(x) so say Mk = max{f ′′

(x)|x ∈ [xk−1, xk]} and write

error =
(x − xk− 1

2
)2

2!
Mk

So, trapezoidal rule fails to integrate a term =
(x−x

k−
1
2
)2

2!
Mk

Do the integration and compare results from trapezoid and true integration

∫ xk

xk−1

(x − xk− 1
2
)2

2!
Mkdx =

(x − xk− 1
2
)3

3.2!

∣

∣

∣

∣

∣

xk

xk−1

Mk

=

[

(xk − xk− 1
2
)3

3.2!
−

(xk−1 − xk− 1
2
)3

3.2!

]

Mk

=

[

(h
2
)3

3.2!
+

(h
2
)3

3.2!

]

Mk =
h3

3.4.2!
Mk
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Now we integrate the error by applying the trapezoidal rule:

∫ xk

xk−1

(x−x
k−

1
2
)2

2!
Mkdx →

Mk
h
2

[

(xk−x
k−

1
2
)2

2!
+

(xk−1−x
k−

1
2
)2

2!

]

= Mk
h
2

[

h

2
)2

2!
+

h

2
)2

2!

]

= Mk
h3

4.2!

Therefore the error made by applying Trapezoidal Rule over the interval

[xk−1, xk] is

= Error from Trap Rule − True Error

=

[

h3

4.2!
− h3

3.4.2!

]

Mk =
h3

12
Mk

Now, for N subintervals the total error is = no of steps × error at each step

= N ∗ h3

12
Mk

= N × 1

12

(b − a)3

N3
Mk

=
1

12

(b − a)3

N2
f

′′

The error formula tells us that if we double N (number of steps) the error

decreases by a factor of 4 ie N 2

Useful to know.

Sometimes you’re given a target accuracy and a range.

You decide the stepsize h, using the error formula.

EXAMPLE

2.3 Simpson’s Rule

Consider
∫ b

a

f(x)dx
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approximate f(x) with polynomial of degree two

Ax2 + Bx + C

ie a parabola.

Any 3 noncollinear point in the place can be fitted with a parabola.

Thus Simpson’s Rule: approximate curves with parabolas

DRAWING

From this we get the area of the shaded region

Ap =
h

3
(y0 + 4y1 + y2)

Eg. applying this formula from x = a to x = b we get

∫ b

a

f(x)dx ≈ h

3
(f(a) + 4f(

a + b

2
) + f(b))

2.3.1 Deriving Ap

Simplifying the previous plot

DRAWING

vspace1 in Area under y = Ax2 + Bx + C for x = −h to h is

Ap =
∫ h

−h
(Ax2 + Bx + C)dx

= Ax3

3
+ fracBx22 + Cx

]h

−h

= 2Ah3

3
+ 2Ch

= h
3
(2Ah2 + 6C)

We also know the curve passes through 3 points

(−h, y0); (0, y1); (h, y2)

y0 = Ah2 − Bh + c; y1 = C; y2 = Ah2 + Bh + C
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C = y1

Ah2 − Bh = y0 − y1

Ah2 + Bh = y2 − y1

2Ah2 = y0 + y2 − 2y1

expressing Ap in terms of y0, y1, y2

Ap =
h

3
(2Ah2 + 6C) =

h

3
((y0 + y2 − 2y1) + 6y1)

Ap =
h

3
((y0 + 4y1 + y2)

And we now have Simpson’s rule.

∫ x+h

x−h

f(x)dx ≈ h

3
(f(x − h) + 4f(x) + f(x + h))

Note: the area calculated, for each subinterval is of width 2h.

2.3.2 Extended Simpson’s Rule

We extend the formula for n subintervals.

DRAWING

n must be even to have each subinterval of width 2h.

Calculate each area and sum

Let S denote ans from Simpson’s rule

S = h
3
(y0 + 4y1 + y2) + h

3
(y2 + 4y3 + y4) + ...+

h
3
(yn−2 + 4yn−1 + yn)
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From this we get the Extended Simpson’s Rule

S =
h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + ... + 4yn−1 + yn)

EXAMPLES

2.3.3 Error of the Simpson’s Rule

degree Exact Simpson Rule
h
3
(f(a) + 4f(a+b

2
) + f(b))

0
∫ 1

0
1dx = 1 0.5

3
(1 + 4(1) + 1) = 1

1
∫ 1

0
xdx = 0.5 0.5

3
(0 + 4(0.5) + 1) = 0.5

2
∫ 1

0
x2dx = 1

3
0.5
3

(02 + 4(0.5)2 + 12) = 1
3

3
∫ 1

0
x3dx = 1

4
0.5
3

(03 + 4(0.5)3 + 13) = 1
4

4
∫ 1

0
x4dx = 1

5
0.5
3

(04 + 4(0.5)4 + 14) = 5
24

We get an exact answer for any f(x) up to degree 3 ie up to x3.

From the Taylor expansion a la Trapezoid rule

error − (x − xk)
4

4!
f (4)(x)

at x ∈ [xk−1, xk+1].

DRAWING

We now proceed as in a similar fashion to the the Trapezoidal case, to

find the error. We integrate the error term over subintervals of size 2h

error =
(x − xk)

4

4!
f (4)(x),

Mk = max{f(x)|x ∈ [xk−1, xk+1]}
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∫ xk+1

xk−1

(x−xk)4

4!
dx = (x−xk)5

5.4!

∣

∣

∣

xk+1

xk−1

Mk

=
[

(xk+1−xk)5

5.4!
− (xk−1−xk)5

5.4!

]

Mk

=
[

h5

5.4!
+ h5

5.4!

]

Mk

= 2h5

5.4!
Mk

and by Simpson’s Rule

∫ xk+1

xk−1

(x−xk)4

4!
dx → Mk

h
3

[

(xk−1−xk)4

4!

+4 (xk−xk)4

4!
+ (xk+1−xk)4

4!

]

Mk

= h
3

[

h4

4!
+ 0 + h4

4!

]

Mk

= 2h5

3.4!
Mk

So the error for the Simpson rule is

2h5

3.4!
Mk −

2h5

5.4!
Mk =

h5

90
Mk

For a length 2h. For 1 step of size h error = h5

90
Mk.

Therefore the error for the extended rule for N steps is

= N × h5

180
Mk

= N × (b − a)5

N5

1

180
Mk

=
(b − a)5

N4

1

180
Mk

Therefore if f double N the error decreases by a factor 24 = 16.

This shows that Simpson’ rule is considerably more accurate than Trape-

zoidal.

EXAMPLE
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2.4 Polynomials of low degree

If f(x) is a polynomial of degree less than 4

⇒ fourth derivative=0

⇒ Simpson’s error= (b−a)5

N4

f(4)(x)
180

(b−a)5

N4

0(x)
180

= 0

Therefore no error in the Simpson’s approx of
∫ b

a
f(X)dx

ie if f(x) is constant ∼ a;

linear ∼ x;

quadratic ∼ x2;

cubic ∼ x3.

Simpson’s rule give an exact answer for
∫ b

a
f(X)dx whether the # subdivi-

sions.

EXAMPLE

2.5 Summary

2.5.1 Trapezoidal Rule

The Trapezoidal Rule

∫ b

a

f(x)dx ≈ h

2
[f(a) + f(b)]

and the extended rule

∫ b

a
f(x)dx ≈ h[1

2
f(a) + f(x1) + f(x2) + f(x3)+

... + f(xn−1) + 1
2
f(b)]

The error = h3

12
Mk or in other words:

the error is O(h3)
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2.5.2 Simpson’s Rule

Simpson’s Rule

∫ b

a

f(x)dx ≈ h

3
[f(a) + 4f(

a + b

2
) + f(b)]

and the extended rule

∫ b

a
f(x)dx ≈ h

3
[f(a) + 4f(x1) + 2f(x2) + 4f(x3)

+2f(x4) + ... + 4f(xn−1) + f(xn)]

and the error in each step is O(h5)

ie error = h5

180
Mk
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