Thus the desired solution is

$$
y=2.5-\cos (x)
$$

Chapter 4

Differential equations

An Ordinary differential equations (ODE's) is of the form

$$
\begin{equation*}
y^{\prime}=f(x) \tag{4.1}
\end{equation*}
$$

f is a function. The general solution to (4.4) is of the form

$$
y=\int f(x) d x+c
$$

usually containing an arbitrary constant c. In order to determine the solution uniquely it is necessary to impose an initial condition.

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0} \tag{4.2}
\end{equation*}
$$

Example The general solution of the equation

$$
y^{\prime}=\sin (x)
$$

is

$$
y=-\cos (x)+c
$$

If we specify the condition

$$
y\left(\frac{\pi}{3}\right)=2
$$

then it is easy to find $c=2.5$.
\diamond

The more general ODE is of the form

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{4.3}
\end{equation*}
$$

is approached in a similar fashion.

The most general form is

$$
\begin{equation*}
\frac{d y_{i}(x)}{d x}=f\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \tag{4.4}
\end{equation*}
$$

ie Find $y_{i}(x)$ for known f_{i}
The solution isn't completely specified by the ODE. Therefore we need BOUNDARY CONDITIONS.
Which leads to 2 types of problem

1. initial value problem

- all the y_{i} are specified at some point $x_{\text {start }}$ or at a set of x-points eg tabulated intervals

2. two - point boundary problem

- b.c. specified at 2 points typically at $x_{\text {start }}, x_{\text {finish }}$ we want to know what happens in between.
\Rightarrow We're going to look at the initial value problems (IVP) with

1. Euler's method
2. Runge-Kutta method

4.1 Euler Method

We have an ODE of the form

$$
y^{\prime}(x)=f(x, y)
$$

and with the initial condition

$$
y(a)=A
$$

on the interval $[a, b]$.
Euler generates a table of approximate values for $y(x)$.
Suppose this is done for equally spaced values of x
ie choose N values so the separation between each value is

$$
h=\frac{(b-a)}{N}
$$

and from this we construct the approximations at

$$
x=a+n h, \quad n=0,1, \ldots N
$$

DRAWING

To arrive at the numerical recipe for Euler's method. We use the Taylor series expansion of $y(x)$ at $x=x_{n}$
ie y at a point in $[a, b]$ is

$$
y\left(x_{n+1}\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\ldots
$$

y is at a small distance (one step size) from y at x_{n}
eg $y\left(x_{2}\right)$ is calculated from $y\left(x_{1}\right)$ when the step size is small.
We have $y^{\prime}(x)=f(x, y)$, therefore

$$
y\left(x_{n+1}\right) \approx y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)=y\left(x_{n}\right)+h f\left(x_{n}, y_{n}\right)
$$

So the formula for Euler is

$$
\begin{gathered}
y_{0}=A \\
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
\end{gathered}
$$

this formula advances the solution from x_{n} to x_{n+1} to \ldots to x_{N}.
In full
y_{0} at $x_{0}=a+0 . h=a$ boundary
next step

$$
y_{1} \text { at } x_{1}=a+1 . h=a+h
$$

$$
y_{2} \text { at } x_{2}=a+2 . h=a+2 h
$$

y_{N} at $x_{N}=a+N . h=b$ boundary
TYPED NOTES

4.2 There is some error incurred with each step of Euler

Therefore we work out the "local truncation error" by comparing the Euler expression for y_{n+1} with the exact expression, ie

$$
\text { error }=\text { exact answer }- \text { numerical answer }
$$

Euler

$$
y_{\text {euler }}\left(x_{n}+h\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)
$$

Exact expression for $y\left(x_{n}+h\right)$ keeps all higher order terms in Taylor expansion ie

$$
y_{\text {exact }}\left(x_{n+1}\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\ldots
$$

Remember, we 'truncated' this series to arrive at Euler.
The error we made when we truncated

$$
\begin{aligned}
\text { error } & =y_{\text {exact }}\left(x_{n}+h\right)-y_{\text {euler }}\left(x_{n}+h\right) \\
& =y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\ldots-\left[y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)\right] \\
& =\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\ldots
\end{aligned}
$$

Implies

$$
\begin{aligned}
\text { error } & =(\text { constant }) h^{2}+O\left(h^{3}\right) \\
& =K h^{2}+O\left(h^{3}\right)
\end{aligned}
$$

write it in terms of ' h ' since this is the only thing we have control over So if our interval is

$$
x_{\text {start }}-x_{\text {Finish }}
$$

stepsize $=h$

$$
\text { Number of steps taken }=\frac{\left|x_{\text {start }}-x_{\text {Finish }}\right|}{h}
$$

and each step introduces an error in $y\left(x_{\text {Finish }}\right)$ is

$$
\begin{aligned}
& \frac{\left|x_{\text {start }}-x_{\text {Finish }}\right|}{h}\left(K h^{2}+O\left(h^{3}\right)\right) \\
& =K\left(x_{\text {start }}-x_{\text {Finish }}\right) h+O\left(h^{2}\right)
\end{aligned}
$$

Therefore the error is linear in stepsize.
Euler
Conceptually easiest, not the most accurate though.
Runge-Kutta
Propagates a solution at $x=a$ over an interval using info. from several Euler like steps.
NOTES ON EULER CODE.

4.3 can we do better?

We use an Euler- step to take a 'trial' step to the midpoint of the interval. We use (x, y) at the MIDPOINT to compute 'real' step across the interval
ie to get from $\left(x_{n}, y_{n}\right)$ to $\left(x_{n+1}, y_{n+1}\right)$ use $\left(x_{n+\frac{1}{2}}, y_{n+\frac{1}{2}}\right)$

DRAWING

We want to know: y_{n+1}
We know: y_{n}
we need $\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
We do this by using the Taylor expansion.
We expand $f(x, y)$ in a Taylor series about the midpoint of the subinterval $\left[x_{n}, x_{n+1}\right]$
ie about $\frac{x_{n}+x_{n+1}}{2}=x_{n+\frac{1}{2}}=x_{n}+\frac{h}{2}$

$$
f(x, y) \approx f\left(x_{n+\frac{1}{2}}, y_{n+\frac{1}{2}}\right)+\left(x-x_{n+\frac{1}{2}}\right) \frac{d f}{d x}+\ldots
$$

$$
\int_{x_{n}}^{x_{n+1}} f(x, y) \approx \int_{x_{n}}^{x_{n+1}} f\left(x_{n+\frac{1}{2}}, y_{n+\frac{1}{2}}\right)+\int_{x_{n}}^{x_{n+1}}\left(x-x_{n+\frac{1}{2}}\right) \frac{d f}{d x}+\ldots
$$

But if $x=x_{n+\frac{1}{2}}$ ie if the integral is evaluated around the midpoint, $(x-$ $\left.x_{n+\frac{1}{2}}\right) \rightarrow 0$

$$
f(x, y) \approx f\left(x_{n+\frac{1}{2}}, y_{n+\frac{1}{2}}\right)
$$

So, substituting in equation for y_{n+1}

$$
\begin{gathered}
y_{n+1}=y_{n}+h f\left(x_{n+\frac{1}{2}}, y_{n+\frac{1}{2}}\right) \\
=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n+\frac{1}{2}}\right)
\end{gathered}
$$

We need

$$
y_{n+\frac{1}{2}}
$$

Therefore we approximate a value from Euler

$$
\begin{aligned}
y_{n+\frac{1}{2}} & =y_{n}+\delta_{x} y^{\prime}\left(x_{n}\right) \\
& =y_{n}+\frac{h}{2} y^{\prime}\left(x_{n}\right) \\
& =y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)
\end{aligned}
$$

From this we get a 2 nd order Runge-Kutta Method

$$
\begin{aligned}
y_{n+1} & =y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n+\frac{1}{2}}\right) \\
& =y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right)
\end{aligned}
$$

And if we break it down into stages we have

$$
\begin{aligned}
k_{1}= & h f\left(x_{n}, y_{n}\right) \\
k_{2}= & h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
& y_{n+1}=y_{n}+k_{2}
\end{aligned}
$$

So to start Runge-Kutta we need:
f at midpoint and endpoints
y at previous point
Therefore we can start from an initial condition
EXAMPLE
CODE 2nd order

So far we have 2nd order Runge-Kutta

$$
y_{n+1}=y_{n}+k_{2}+O\left(h^{3}\right)
$$

We can similarly derive a higher order formulas. The most popular is $\mathbf{4 \text { th order Runge-Kutta }}$

$$
\left.\begin{array}{rl}
k_{1} & =h f\left(x_{n}, y_{n}\right) \\
k_{2} & =h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
k_{3} & =h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
k_{4} & =h f\left(x_{n}+h, y_{n}+k_{3}\right) \\
y_{n+1}= & y_{n}
\end{array}\right) \frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) .
$$

CODE 4th order

4.4 Solving Differential Equations

Problems involving ODE's can always be reduced to 1st order differential equations.
Example

$$
\frac{d^{2} y}{d x^{2}}+q(x) \frac{d y}{d x}=r(x)
$$

We call

$$
z(x)=\frac{d y}{d x}
$$

and substitute

$$
\frac{d z}{d x}+q(x) z(x)=r(x)
$$

This means the original equation is reduced to 2 coupled 1 st order equations

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=z(x) \\
\frac{d z}{d x}=r(x)-q(x) z(x)
\end{array}\right.
$$

As before we need an initial condition for each problem therefore we need two initial conditions.

$$
y(0)=\alpha \text { and } \frac{d y(0)}{d x}=\beta
$$

which becomes

$$
y(0)=\alpha \text { and } z(0)=\beta
$$

We can now use the Euler of Runge-Kutta to approximate the solution. In the case of Euler we have

$$
\left\{\begin{array}{l}
y_{i+1}=y_{i}+h z_{i} \\
z_{i+1}=z_{i}+h\left(r\left(x_{i}\right)-q\left(x_{i}\right) z_{i}\right)
\end{array}\right.
$$

Example

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}
$$

with initial conditions $y(0)=1$ and $y^{\prime}(0)=2$ can be converted to the system

$$
\begin{array}{cl}
y^{\prime}=z & y(0)=1 \\
z^{\prime}=e^{t}-2 y-3 z & z(0)=2
\end{array}
$$

the difference Euler equation is of the form

$$
\begin{gathered}
y_{i+1}=y_{i}+h z_{i} \\
z_{i+1}=z_{i}+h\left(e^{t_{i}}-2 y_{i}-3 z_{i}\right)
\end{gathered}
$$

Example A Specific example:

Harmonic oscillator with Friction

Such a system is:
ie. spring stretched distance x_{0}, released, the position thereafter described by a second order differential equation.

$$
\begin{gathered}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x(t)=0 \\
\frac{d^{2} x}{d t^{2}}+2 \beta \frac{d x}{d t}+\omega^{2} x(t)=0
\end{gathered}
$$

Q: can we calculate x at the some time t, after release using numerical techniques?
\Rightarrow Reduce equation to first order coupled equations.

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 \beta \frac{d x}{d t}+\omega^{2} x(t)=0 \tag{4.5}
\end{equation*}
$$

say

$$
\frac{d x}{d t}=p(t)
$$

substituting into 4.5

$$
\frac{d p}{d t}+2 \beta p(t)+\omega^{2} x(t)=0
$$

we now have our two equations

$$
\left\{\begin{array}{cl}
\frac{d x}{d t}=p & \text { solving gives } x(t) \\
\frac{d p}{d t}=-2 \beta p-\omega^{2} x(t) & \text { solving gives } p(t)
\end{array}\right.
$$

these equations are coupled ie interdependent.
To start: we need initial conditions
at $t=0$

$$
\begin{aligned}
\text { velocity } & =\frac{d x}{d t}=p(0)=0 \\
\text { position } & =x(0)=1
\end{aligned}
$$

We also choose

$$
\begin{gathered}
h=0.1 \\
2 \beta=0.2 \\
\omega^{2}=1
\end{gathered}
$$

We can now numerically solve these equations. $t=0$

$$
x_{0}=1 \quad p_{0}=0
$$

$t=0.1$
First equation

$$
\frac{d x}{d t}=p(t)
$$

$$
\text { Euler: } \begin{aligned}
x_{1} & =x_{0}+h f\left(x_{0}, t_{0}\right) \\
& x_{1}=1+0.1 p_{0} \\
& x_{1}=1
\end{aligned}
$$

Second equation

$$
\begin{aligned}
\frac{d p}{d t} & =-2 \beta p(t)-\omega^{2} x(t) \\
\text { Euler: } \quad p_{1} & =p_{0}+h g\left(p_{0}, x_{0}, t_{0}\right) \\
p_{1} & =0+0.1\left[-0.2 p_{0}-1 x_{0}\right) \\
p_{1} & =0+0.1[0-1] \\
p_{1} & =-0.1
\end{aligned}
$$

Only now we can solve for \square

$$
\begin{array}{ll}
\text { Euler: } & x_{2}=x_{1}+h f\left(x_{1}, t_{1}\right) \\
& x_{2}=1+0.1 p_{1} \\
& x_{2}=1+0.1(-0.1)
\end{array}
$$

$$
x_{1}=0.99
$$

Therefore each step requires solving 2 ODES.

$$
\begin{array}{ll}
\text { Euler }: & p_{2}=p_{1}+h g\left(p_{1}, x_{1}, t_{1}\right) \\
& p_{2}=-0.1+0.1\left[-0.2 p_{1}-1 x_{1}\right) \\
& p_{2}=0+0.1[-0.2(-0.1)-1(1)] \\
& p_{2}=-0.198
\end{array}
$$

$t=0.3$

Using RK
We use the same method but you have $4 f(x, t)$ evaluations for each equation solved.

Aside

Interesting physics:
The answer ' x ' at each ' t ' depends on the values of β and ω.
4 cases:

- $\beta^{2}=\omega^{2}$ critical damping
- $\beta^{2}>\omega^{2}$ over critical damping
- $\beta^{2}<\omega^{2}$ under critical damping
- $\beta-0$ no damping

Our example here:

$$
\begin{gathered}
2 \beta=0.2 \Rightarrow \beta^{2}=0.01 \\
\omega^{2}=1
\end{gathered}
$$

therefore we had under critical damping.

