Chapter 4
Differential equations

An Ordinary differential equations (ODE’s) is of the form
y = f(@) (4.1)

f is a function. The general solution to (4.4) is of the form

Y= /f(x)dx-i—c

usually containing an arbitrary constant c¢. In order to determine the solution

uniquely it is necessary to impose an initial condition.

y(@o) = 1o (4.2)
Example The general solution of the equation
y = sin(x)
is
y = —cos(z) +c

If we specify the condition

’y(g) =2

then it is easy to find ¢ = 2.5.
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Thus the desired solution is
y=2.5—cos(x)

<

The more general ODE is of the form

y = f(z,y) (4.3)

is approached in a similar fashion.

The most general form is

dy; ()
dx

= f(@, 91, Y2, - Un) (4.4)

ie Find y;(z) for known f;
The solution isn’t completely specified by the ODE.
Therefore we need BOUNDARY CONDITIONS.

Which leads to 2 types of problem

1. initial value problem
- all the y; are specified at some point xgq+ Or at a set of z-points eg

tabulated intervals

2. two - point boundary problem
- b.c. specified at 2 points typically at Tsqar, T finish We want to know

what happens in between.

= We're going to look at the initial value problems (IVP) with

1. Euler’s method

2. Runge-Kutta method
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4.1 FEuler Method

We have an ODE of the form

’

y () = f(z,y)
and with the initial condition
yla) = A

on the interval [a, b].
Euler generates a table of approximate values for y(z).
Suppose this is done for equally spaced values of z

ie choose N values so the separation between each value is

(b—a)

h="—"%x

and from this we construct the approximations at
r=a+nh, n=01,.N

DRAWING

To arrive at the numerical recipe for Euler’s method. We use the Taylor
series expansion of y(z) at z = z,

ie y at a point in [a, b] is

' h?
Y(@np1) = y(zn) + hy (v,) + Ey (T) + ...

y is at a small distance (one step size) from y at x,
eg y(z2) is calculated from y(x;) when the step size is small.

We have y'(x) = f(z,y), therefore

Y(Tng1) = y(wn) + hy/(xn) =y(zn) + nf (20, Yn)
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So the formula for Euler is
Yo=A
Yn+1 = Yn + hf(xn: yn)

this formula advances the solution from z,, to z,41 to ... to zy.
In full
Yo at kg = a + 0.h = @ boundary
next step
phatry=a+1lh=a+h
ys at o =a+2.h=a+2h

yn at xy = a + N.h = b boundary

TYPED NOTES

4.2 There is some error incurred with each

step of Euler

Therefore we work out the ”local truncation error” by comparing the Euler

expression for y, 11 with the exact expression, ie

error = exact answer — numerical answer

Euler
yeulcr(xn + h) = y(xn) + hy’(l‘n)

Exact expression for y(z,,+h) keeps all higher order terms in Taylor expansion
ie
2

/ h*
yczact(xn+1) = y(xn) + hU (xn) + Y (‘TTL) +.

20
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Remember, we ‘truncated’ this series to arrive at Euler. ie to get from (2, Yn) t0 (Tpni1, Yni1) use (.rm_%, ym_%)
The error we made when we truncated DRAWING

We want to know: y,,41

error yczact(])n + h) - yeulcr(l'n + h)

b B2 ! We know: y,

= Z}/LEEZ) + hy (1n) + oY (1n) + = [y(ln) + hy (“En)] we need f;”n"“ f(x7 y)dl

= 5y (@) + We do this by using the Taylor expansion.
Implics We expand f(z,y) in a Taylor series about the midpoint of the subinterval

error = (constant)h? + O(h%) [Tny Tns1]
_ Kh? + O(h?) ie about 71”5"“ =Tyl =Tpt %
write it in terms of ’h’ since this is the only thing we have control over 1
So if our interval is fla,y) ~ f(‘T"*%’y"Jr%) +@- I"Jr%)d?
Tstart — L Finish i1 Tni1 Tnt1 df
stepsize=h / ey~ / f(anr%, yn+%) - / (- m%%)% o
4 Tn Tn Tn
x — T Finish . . . S
Number of steps taken = M But if z = z,,, 1 e if the integral is evaluated around the midpoint, (z —
and each step introduces an error in y(Zpinisn) is I”*’%) -0
‘Istart - $Fin'ish| (th + O(hg)) f(l‘ﬂ y) ~ f(xn+%a yn+%)

h

So, substituting in equation for y,1
= K(Istm‘t - IF’inish)h + O(hz)

- . . = hf(z
Therefore the error is linear in stepsize. Yni1 = Yo + 1S ( n+3) y"+%)

Euler L
Conceptually easiest, not the most accurate though. = Yn+hf(zn+ 9 yn+%)
Runge-Kutta We need

Propagates a solution at x = a over an interval using info. from several Euler

yn+%
like steps.

NOTES ON EULER CODE. Therefore we approximate a value from Euler

Yntl = Un + 513//(Zn)
Yn + %y,(%)
= YnT+ %f($n Yn)

4.3 can we do better?

We use an Euler- step to take a ’trial’ step to the midpoint of the interval.

We use (z,y) at the MIDPOINT to compute 'real’” step across the interval
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From this we get a 2nd order Runge-Kutta Method 4.4 Solving Differential Equations

Ynt1 Yn + hf(2, +% Y1) Problems involving ODE’s can always be reduced to 1lst order differential
)y Intg )
= Ynt hf(xn + %7 Yn + %f(xm yn)) equations.
Example
And if we break it down into stages we have d’y dy _
a2 4(75)% =r(z)
kl = hf(xnyyn) We call J
ky = hf(zn+ 5y, +5) 2(z) = ﬁ
Yni1 = Yn + ko and substitute " o o
— +q(x)z(x) =r(x
So to start Runge-Kutta we need: dx
f at midpoint and endpoints This means the original equation is reduced to 2 coupled 1st order equations
y at previous point
L s W — 4 (z)
Therefore we can start from an initial condition ZT
EXAMPLE z = r(x) —q(x)z(2)

CODE 2nd order As before we need an initial condition for each problem therefore we need

two initial conditions.
So far we have 2nd order Runge-Kutta

) y(0) = @ and _dy(O) =4
Ynt1 = Yn + k2 + O(hs) o

which becomes

We can similarly derive a higher order formulas. The most popular is 4th order Runge-Kutta y(0) = a and 2(0) = 3
ki = hf(zn,yn) We can now use the Euler of Runge-Kutta to approximate the solution. In
ko = hf(x,+ %7 Yn + %) the case of Euler we have
ks = hf(zn+ 02y, +2
ki _ hﬁ% jrr 27 ;jn j: ;3)) { Yiv1 = Yi + hzi
zip1 = 2 + h(r(z:) — q(@)z)
Yn+1 = Yn + %(kl + 2ka + 2k3 + k4) Example
CODE 4th order y o+ 2y =
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with initial conditions »(0) = 1 and %' (0) = 2 can be converted to the system

d2/ d "
d_tj + Zﬂd—i +wa(t) =0
y == y(0) =1 )
=t —2y—32 2(0)=2 say
dx 0
=y
the difference Euler equation is of the form dt
substituting into 4.5
= ) d
Yir1 = Yi + hz @, 20p(t) + w?z(t) =0
Zi+l = % + h(fﬂti - 27}1 - 32’,) dt

we now have our two equations
Example A Specific example:

% = —208p — w2x(t) solving gives p(t)

{ Z—f =p solving gives x(t)
Harmonic oscillator with Friction

Such a system is: . L
U 8 system 18 these equations are coupled ie interdependent.

To start: we need initial conditions
att =0
T

velocity = Z—t =p0)=0

position =z(0)=1
We also choose
h=0.1
26=0.2
ie. spring stretched distance xg, released, the position thereafter described W= 1

by a second order differential equation.
We can now numerically solve these equations.

d*x —
W + W2flf(t) =0
zo=1 py=0
d*x dx
2 4932 20() = 0 t=0.1
dt2+ ﬁdterx()
Q: can we calculate x at the some time ¢, after release using numerical tech- First equation
. dx
niques? == p(t
q 7 = P

= Reduce equation to first order coupled equations.
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FEuler :

Second equation

Euler :

Only now we can solve for

FEuler :

r1 = o+ hf(wo,to)
14 0.1po
1

5
S
Il

—208p(t) — wz(t)

= po + hg(po, zo,to)

t=0.2

0+0.1[0 — 1]
= —0.1
) x1 + hf(z,th)

T3 = 1+0.1p
1 = 0.99

Therefore each step requires solving 2 ODES.

Euler :

Using RK

We use the same method but you have 4 f(x,t) evaluations for each equation

solved.

= p1+hg(pr,x1,t)

—0.1+0.1[—0.2p; — 1xy)
04 0.1[=0.2(~0.1) — 1(1)]
—0.198
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Aside

Interesting physics:
The answer 'z’ at each 't depends on the values of 8 and w.
4 cases:

o (3?2 = w? critical damping

o (32 > w? over critical damping
e (3? < w? under critical damping
e 3 — 0 no damping

Our example here:
28=02= (%=0.01

wi=1

therefore we had under critical damping.
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