
Chapter 4

Differential equations

An Ordinary differential equations (ODE’s) is of the form

y
′

= f(x) (4.1)

f is a function. The general solution to (4.4) is of the form

y =

∫

f(x)dx + c

usually containing an arbitrary constant c. In order to determine the solution

uniquely it is necessary to impose an initial condition.

y(x0) = y0 (4.2)

Example The general solution of the equation

y
′

= sin(x)

is

y = −cos(x) + c

If we specify the condition

y(
π

3
) = 2

then it is easy to find c = 2.5.

33

Thus the desired solution is

y = 2.5 − cos(x)

�

The more general ODE is of the form

y
′

= f(x, y) (4.3)

is approached in a similar fashion.

The most general form is

dyi(x)

dx
= f(x, y1, y2, ..., yn) (4.4)

ie Find yi(x) for known fi

The solution isn’t completely specified by the ODE.

Therefore we need BOUNDARY CONDITIONS.

Which leads to 2 types of problem

1. initial value problem

- all the yi are specified at some point xstart or at a set of x-points eg

tabulated intervals

2. two - point boundary problem

- b.c. specified at 2 points typically at xstart, xfinish we want to know

what happens in between.

⇒ We’re going to look at the initial value problems (IVP) with

1. Euler’s method

2. Runge-Kutta method

34

4.1 Euler Method

We have an ODE of the form

y
′

(x) = f(x, y)

and with the initial condition

y(a) = A

on the interval [a, b].

Euler generates a table of approximate values for y(x).

Suppose this is done for equally spaced values of x

ie choose N values so the separation between each value is

h =
(b − a)

N

and from this we construct the approximations at

x = a + nh, n = 0, 1, ...N

DRAWING

To arrive at the numerical recipe for Euler’s method. We use the Taylor

series expansion of y(x) at x = xn

ie y at a point in [a, b] is

y(xn+1) = y(xn) + hy
′

(xn) +
h2

2!
y

′′

(xn) + ...

y is at a small distance (one step size) from y at xn

eg y(x2) is calculated from y(x1) when the step size is small.

We have y
′

(x) = f(x, y), therefore

y(xn+1) ≈ y(xn) + hy
′

(xn) = y(xn) + hf(xn, yn)

35

So the formula for Euler is

y0 = A

yn+1 = yn + hf(xn, yn)

this formula advances the solution from xn to xn+1 to ... to xN .

In full

y0 at x0 = a + 0.h = a boundary

next step

y1 at x1 = a + 1.h = a + h

y2 at x2 = a + 2.h = a + 2h

.

.

.

yN at xN = a + N.h = b boundary

TYPED NOTES

4.2 There is some error incurred with each

step of Euler

Therefore we work out the ”local truncation error” by comparing the Euler

expression for yn+1 with the exact expression, ie

error = exact answer − numerical answer

Euler

yeuler(xn + h) = y(xn) + hy
′

(xn)

Exact expression for y(xn+h) keeps all higher order terms in Taylor expansion

ie

yexact(xn+1) = y(xn) + hy
′

(xn) +
h2

2!
y

′′

(xn) + ...

36

Remember, we ’truncated’ this series to arrive at Euler.

The error we made when we truncated

error = yexact(xn + h) − yeuler(xn + h)

= y(xn) + hy
′

(xn) + h2

2!
y

′′

(xn) + ... − [y(xn) + hy
′

(xn)]

= h2

2!
y

′′

(xn) + ...

Implies

error = (constant)h2 + O(h3)

= Kh2 + O(h3)

write it in terms of ’h’ since this is the only thing we have control over

So if our interval is

xstart − xFinish

stepsize=h

Number of steps taken =
|xstart − xFinish|

h

and each step introduces an error in y(xFinish) is

|xstart − xFinish|
h

(Kh2 + O(h3))

= K(xstart − xFinish)h + O(h2)

Therefore the error is linear in stepsize.

Euler

Conceptually easiest, not the most accurate though.

Runge-Kutta

Propagates a solution at x = a over an interval using info. from several Euler

like steps.

NOTES ON EULER CODE.

4.3 can we do better?

We use an Euler- step to take a ’trial’ step to the midpoint of the interval.

We use (x, y) at the MIDPOINT to compute ’real’ step across the interval

37

ie to get from (xn, yn) to (xn+1, yn+1) use (xn+ 1
2
, yn+ 1

2
)

DRAWING

We want to know: yn+1

We know: yn

we need
∫ xn+1

xn
f(x, y)dx

We do this by using the Taylor expansion.

We expand f(x, y) in a Taylor series about the midpoint of the subinterval

[xn, xn+1]

ie about xn+xn+1

2
= xn+ 1

2
= xn + h

2

f(x, y) ≈ f(xn+ 1
2
, yn+ 1

2
) + (x − xn+ 1

2
)
df

dx
+ ...

∫ xn+1

xn

f(x, y) ≈
∫ xn+1

xn

f(xn+ 1
2
, yn+ 1

2
) +

∫ xn+1

xn

(x − xn+ 1
2
)
df

dx
+ ...

But if x = xn+ 1
2

ie if the integral is evaluated around the midpoint, (x −
xn+ 1

2
) → 0

f(x, y) ≈ f(xn+ 1
2
, yn+ 1

2
)

So, substituting in equation for yn+1

yn+1 = yn + hf(xn+ 1
2
, yn+ 1

2
)

= yn + hf(xn +
h

2
, yn+ 1

2
)

We need

yn+ 1
2

Therefore we approximate a value from Euler

yn+ 1
2

= yn + δxy
′

(xn)

= yn + h
2
y

′

(xn)

= yn + h
2
f(xn, yn)

38

From this we get a 2nd order Runge-Kutta Method

yn+1 = yn + hf(xn + h
2
, yn+ 1

2
)

= yn + hf(xn + h
2
, yn + h

2
f(xn, yn))

And if we break it down into stages we have

k1 = hf(xn, yn)

k2 = hf(xn + h
2
, yn + k1

2
)

yn+1 = yn + k2

So to start Runge-Kutta we need:

f at midpoint and endpoints

y at previous point

Therefore we can start from an initial condition

EXAMPLE

CODE 2nd order

So far we have 2nd order Runge-Kutta

yn+1 = yn + k2 + O(h3)

We can similarly derive a higher order formulas. The most popular is 4th order Runge-Kutta

k1 = hf(xn, yn)

k2 = hf(xn + h
2
, yn + k1

2
)

k3 = hf(xn + h
2
, yn + k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

CODE 4th order

39

4.4 Solving Differential Equations

Problems involving ODE’s can always be reduced to 1st order differential

equations.

Example
d2y

dx2
+ q(x)

dy

dx
= r(x)

We call

z(x) =
dy

dx

and substitute
dz

dx
+ q(x)z(x) = r(x)

This means the original equation is reduced to 2 coupled 1st order equations

{

dy
dx

= z(x)
dz
dx

= r(x) − q(x)z(x)

As before we need an initial condition for each problem therefore we need

two initial conditions.

y(0) = α and
dy(0)

dx
= β

which becomes

y(0) = α and z(0) = β

We can now use the Euler of Runge-Kutta to approximate the solution. In

the case of Euler we have

{

yi+1 = yi + hzi

zi+1 = zi + h(r(xi) − q(xi)zi)

Example

y
′′

+ 3y
′

+ 2y = et

40

with initial conditions y(0) = 1 and y
′

(0) = 2 can be converted to the system

y
′

= z y(0) = 1

z
′

= et − 2y − 3z z(0) = 2

the difference Euler equation is of the form

yi+1 = yi + hzi

zi+1 = zi + h(eti − 2yi − 3zi)

Example A Specific example:

Harmonic oscillator with Friction

Such a system is:

ie. spring stretched distance x0, released, the position thereafter described

by a second order differential equation.

d2x

dt2
+ ω2x(t) = 0

d2x

dt2
+ 2β

dx

dt
+ ω2x(t) = 0

Q: can we calculate x at the some time t, after release using numerical tech-

niques?

⇒ Reduce equation to first order coupled equations.

41

d2x

dt2
+ 2β

dx

dt
+ ω2x(t) = 0 (4.5)

say
dx

dt
= p(t)

substituting into 4.5
dp

dt
+ 2βp(t) + ω2x(t) = 0

we now have our two equations

{

dx
dt

= p solving gives x(t)
dp
dt

= −2βp − ω2x(t) solving gives p(t)

these equations are coupled ie interdependent.

To start: we need initial conditions
at t = 0

velocity = dx
dt

= p(0) = 0

position = x(0) = 1

We also choose

h = 0.1

2β = 0.2

ω2 = 1

We can now numerically solve these equations.
t = 0

x0 = 1 p0 = 0

t = 0.1

First equation
dx

dt
= p(t)

42

Euler : x1 = x0 + hf(x0, t0)

x1 = 1 + 0.1p0

x1 = 1

Second equation
dp

dt
= −2βp(t) − ω2x(t)

Euler : p1 = p0 + hg(p0, x0, t0)

p1 = 0 + 0.1[−0.2p0 − 1x0)

p1 = 0 + 0.1[0 − 1]

p1 = −0.1

Only now we can solve for
t = 0.2

Euler : x2 = x1 + hf(x1, t1)

x2 = 1 + 0.1p1

x2 = 1 + 0.1(−0.1)

x1 = 0.99

Therefore each step requires solving 2 ODES.

Euler : p2 = p1 + hg(p1, x1, t1)

p2 = −0.1 + 0.1[−0.2p1 − 1x1)

p2 = 0 + 0.1[−0.2(−0.1) − 1(1)]

p2 = −0.198

t = 0.3

.

.

.

Using RK

We use the same method but you have 4 f(x, t) evaluations for each equation

solved.

43

Aside

Interesting physics:

The answer ’x’ at each ’t’ depends on the values of β and ω.

4 cases:

• β2 = ω2 critical damping

• β2 > ω2 over critical damping

• β2 < ω2 under critical damping

• β − 0 no damping

Our example here:

2β = 0.2 ⇒ β2 = 0.01

ω2 = 1

therefore we had under critical damping.

44

