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1 Abstract

In this experiment the One-Dimensional Stationary Solution to the
Schrödinger Equation was investigated using numerical methods by creating
a C++ program. Using the 3-Point Numerov algorithm the Schrödinger
Equation was solved for a symmetric potential energy function to find the
Eigenvalues and Eigenfunctions of an Infinite Square Well potential energy
function. These solutions were compared with the analytically calculated
solutions and were found to agree. The ground state energy was found to
be ε1 = −0.90130956, which was in perfect agreement with the analytical
solution. The solutions were normalised and graphs for the wavefunctions
were plotted using Gnuplot.

A Step Potential energy function was also investigated, and its energy
eigenvalues were found using numerical methods. The orthogonality of these
solutions was checked, and all eigenstates were found to be orthogonal. Fi-
nally a Linear Potential energy function was used and the experiment was
repeated.

2 Introduction & Theory

2.1 The Schrödinger Equation

The Time-Independent Schrödinger Equation is given by

Eψ(x) = − h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) (1)

where

ψn(x) =

√
2

L
sin

(nπ
L
x
)

(2)

is the wavefunction, V (x) is the potential energy function and m is the mass
of the particle.

This equation can be normalised to give

d2h̄ψ(x)

dx̃2
+ γ2[ε− ν(x̃)]ψ(x̃) = 0 (3)

where x̃ = x/L is the dimensionless spatial variable, ν(x̃) = V (x̃)/V0 for
−1 ≤ x̃ ≤ +1 is the dimensionless potential energy function, ε = E/V0 is the
dimensionless energy and

γ2 =
2mL2V0

h̄2 (4)
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is a dimensionless constant where we set γ2 = 100
Differentiating, and then substituting equation (2) into equation (1) gives

the equation for the Energy Eigenvalues

En =
h̄2π2n2

2mL2
+ V0 (5)

2.2 The 3-Point Numerov Algorithm

The equation above can be numerically integrated using the 3-Point
Numerov formula

ψn+1 =
2(1− 5

12
l2k2

n)ψn − (1 + 1
12
l2k2

n−1)ψn−1

1 + 1
12
l2k2

n+1

(6)

where l = 1/(N − 1) is the step size for the discretise spatial variable and N
is the number of points, and kn = γ2[ε− ν(xn)] for our equation above.

The Numerov algorthim will give us a third point if we define two neigh-
bouring points. Thus our algorithm can “shoot” from both sides of our
potential well to calculate the wavefunction ψ(x̃).

2.3 The Euler Difference

We may numerically compute the approximate slope of a function f(x)
using The Euler Difference where

ψ′(x) ' ψ(x+ l)− ψ(x)

l
(7)

2.4 Simpson’s Rule

Furthermore, we may numerically compute the approximate integral of
a function

∫ b

a
f(x)dx using Simpson’s Rule where∫ xN

x0

f(x)dx ' l

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 2fN−2 + 4fN−1 + fN)

=
l

3

f0 + 2

N/2−1∑
j=1

f2j + 4

n/2∑
j=1

f2j−1 + fN

 (8)
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3 Experimental Method

3.1 Symmetric Potential

Using equations (4) and (5) above, an analytical solution for εn was
found in terms of γ where V (x) = −V0. The Ground State Energy Eigenvalue
was then calculated.

The program was then compiled and run without any editing for a number
of trial energies. The wavefunctions ψ(x) were plotted for these trial energies
using Gnuplot.

The program was then edited using gedit. Code was written to print the
difference in the slopes ψleft and ψright at the Matching Point using the Euler
Difference. By using trail energies it was investigated weather the difference
in the slopes was minimised for the ground state energy.

The code was then further edited by adding a for loop with an if state-
ment inside to minimise the difference in ψleft and ψright at the matching
point for any trial energy E below the eigenvalue up to a predefined accu-
racy.

The accuracy of this method was compared to the analytical solutions.
The code was further edited to minimise the difference in the slopes for

the E2 eigenvalue.
Again, the code was edited by changing the matching point and adding a

for loop to rescale ψright so that ψright(xmatching point) = ψleft(xmatching point).
The first six energy eigenvalues were then found and compared with the

analytical solutions.

3.2 Normalisation

The code was edited to allow it to use Simpson’s Rule for Numerical In-
tegration to normalise the wavefunctions. The graphs of these six normalised
wavefunctions were then plotted.

3.3 Step Potential

The potential energy function in the program was edited to give a Step
Potential such that ν(x) = −1 for 0 < x̃ < 0.5 and ν(x) = 0 for 0.5 < x̃ < 1.
The ground state energy for this potential was then found by changing the
matching point.

Next the first six energy eigenvalues were found for the step potential. A
graph of each wavefunction was then plotted.
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The data for each energy eigenstate was saved and was then imported
into Open Office Calc, and using Simpson’s Rule the probabilities were nu-
merically integrated for the six energy eigenstates to check the orthogonality
of some of them.

3.4 Linear Potential

Finally, the potential energy function was again edited, this time to
provide a Linear Potential. Once again, the first six energy eigenstates were
found and graphs of each were plotted.

4 Results & Analysis

4.1 Symmetric Potential

The following expression was found for the energy eigenvalues

εn =
π2n2

γ2
− 1 (9)

This gave a value of ε1 = −0.90130956 units for the ground state energy.
The following graphs were plotted for trial energies both above and below

the ground state energy

(a) E=-5 (b) E=-1.05
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(c) E=0.5 (d) E=0.8

(e) E=1.05 (f) E=5

The following data was obtained for the difference in the slopes of ψleft

and ψright for varying trial energies

Trial Energy Slope Difference
-5 2200

-1.05 0.338
-0.9013 0.000

0.8 0.82
5 0.190

We were able to get a value of ε1 = −0.90130956 accurate to nine decimal
places to the analytically calculated value. It would be possible to get a
value accurate to εmachine, the machine error constant, ' 10−23, however our
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calculator only reads to nine decimal places.
The matching point was changed to 5N/12 + 1, and this worked for all

energy eigenstates.
The first six energy eigenvalues found analytically and using the C++

program were as follows

Energy Eigenstate Analytic Solution C++ solution
ε1 -0.901303956 -0.901303956
ε2 -0.605215824 -0.605215824
ε3 -0.111735603 -0.111735604
ε4 0.579136704 0.579136703
ε5 1.467401100 1.467401099
ε6 2.553057584 2.553057582

4.2 Normalisation

Using the relation

ψ(x)′ =
ψ(x)√
A

where |ψ(x)′|2 = 1 the following normalisation constants A were found nu-
merically

Energy Eigenstate Normalisation Constant, A
ε1 50.5595× 10−5

ε2 12.6400× 10−5

ε3 5.6179× 10−5

ε4 3.1601× 10−5

ε5 2.0225× 10−5

ε6 1.4046× 10−5

The following normalised graphs were then plotted using Gnuplot
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4.3 Step Potential

For the Step Potential the following values for the first six energy eigen-
values were numerically computed

Energy Eigenstate Energy
ε1 -0.731329365
ε2 -0.023988678
ε3 0.436729626
ε4 1.152688182
ε5 1.959921830
ε6 3.095349541

And their normalised graphs were plotted
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The orthogonality of the energy eigenstates was investigated by numeri-
cally computing ∫ xN

x0

ψi(x)ψj(x)dx

for i 6= j. The following results were found, to three significant figures

Energy Eigenstates Probability∫ xN

x0
ψ1(x)ψ2(x)dx -0.000142∫ xN

x0
ψ1(x)ψ3(x)dx 0.000195∫ xN

x0
ψ1(x)ψ4(x)dx 0.000341∫ xN

x0
ψ1(x)ψ5(x)dx 0.000146∫ xN

x0
ψ2(x)ψ3(x)dx -0.000099∫ xN

x0
ψ2(x)ψ4(x)dx -0.000092∫ xN

x0
ψ3(x)ψ4(x)dx -0.000191∫ xN

x0
ψ5(x)ψ6(x)dx 0.000088

4.4 Linear Potential

And finally for the Linear Potential the following energy eigenvalues
were numerically computed
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Energy Eigenstate Energy
ε1 -0.200361835
ε2 0.401537681
ε3 0.951206587
ε4 1.626016836
ε5 2.499172565
ε6 3.575583994

And their normalised graphs were plotted
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5 Error Analysis

As our experiment was preformed on a computer, the fundamental error
is εmachine, the machine error constant, ' 10−23.

Furthermore, there is errors in our calculations due to the nature of nu-
merical methods. The Numerov Algorithm has an error of order ' l6 however
due to the accumulation over many steps the total error is of order ' l4.

In our program our predefined accepted error was m = 1×10−9, and after
the absolute value of the energy increment was below this value the program
stopped computing. It is possible to decrease this number as far as εmachine,
given enough computing power.

6 Conclusions

For the symmetric potential energy function, the value found for the
ground state energy by numerical methods was ε1 = −0.90130956. This was
in perfect agreement to nine places of decimal with the analytical value of
ε1 = −0.90130956.

This was verified to be the ground state energy as the difference in the
slopes of ψleft and ψright was minimum for a trial energy of E = −0.9013.

The original minimisation procedure would not work for the E2 energy
eigenstate because the matching point of N/2 is a point of inflection for this
ψ(x). Thus the slopes of ψleft and ψright do not have opposite sign, and
so our algorithm will not work. The algorithm will work for the E3 energy
eigenstate because here the matching point of N/2 is again an extremum,
and thus the slopes have opposite sign here. An easy way to search for the
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E2 energy eigenstate is to change the matching point to N/4, as here ψ(x)
is an extremum.

Even after rescaling, this minimisation algorithm will fail for the E2 en-
ergy eigenstate for a matching point of N/2 because it is a point of inflection.

We found that the values for the first six energy eigenvalues agree in most
cases, with an error of only ' 10−9 in those cases which did not completely
agree.

For the step potential it was found that two energy eigenvalues are neg-
ative. We needed to choose a matching point outside of the ‘bump’ due to
the fact that the probability of finding a particle there is very low, as the
wavefunction drops off exponentially. This solution to ψ(x) corresponds to
Quantum Tunnelling. It was found that for energies below +1, the particle
was unlikely to be found on the right. However, as the energy was increased
and became greater than +1 the wavefunctions approached those of the sym-
metric potential, and the particle was now likely to be found anywhere, as it
had enough energy to overcome the potential step.

It was found that the probability of any two different eigenstates was of
order ' 10−4. This verifies that the eigenstates are orthogonal.

Finally, the energy eigenvalues for a linear potential were able to be com-
puted numerically. The wavefunctions for this potential were found to be
similar to those of the step potential. This is because the potential in-
creased to the right, and so for low energies, the particle was not likely to
be found there. Once again, as the particle energy became greater than +1
the wavefunction approached that of the symmetric potential as the particle
had enough energy to be climb the potential slope.
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