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Abstract

In this study the exotic charmonium mesonic states of lattice Quantum
Chromodynamics were investigated. Quantum Chromodynamics and lat-
tice Quantum Chromodynamics were reviewed. The Lagrangians of these
theories and their associated mechanics were discussed. It was found that
the non-Abelian nature of Quantum Chromodynamics gives rise to chal-
lenging equations. Non-perturbative analysis of these requires computa-
tional simulation of the theory on a four dimensional Euclidean lattice.
The simple quark model and bound quark-antiquark states were reviewed.
Moreover exotic quark-antiquark states were reviewed, including those of
purely gluonic states know as glueball states.

The Path Integral Formalism of quantum field theory was derived and
using it the correlation function for a free scalar quantum field theory
on a periodic lattice was calculated analytically. It was found that the
correlation function decays exponentially in time with the hyperbolic-sine
of the mass of the state.

Variational fitting was done to Monte Carlo generated data and a
mass was extracted using a chi-squared test for an allowed mesonic state
and an exotic mesonic state. It was found that the 1−− state had a
mass of 3.04499 ± 0.0004 GeV while the 1−+ exotic state had a mass of
4.211± 0.011 GeV.

The partial differential Schrödinger equation was solved by the method
of separation of variables for the radial wavefunction R(r). C++ code
was written to solve the radial wavefunction equation using the Numerov
three-point algorithm for a range of potential functions, including the
Cornell Potential and that of the gluon-flux tube. Graphs of the radial
wavefunctions were plotted for a range of energy levels n and angular mo-
mentum quantum numbers l. In addition the spectrum of the cc̄ mesonic
states was plotted.
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Chapter 1

Introduction & Theory

1.1 The Path to Quantum Chromodynamics

Our universe is governed by four fundamental forces, which, in order of elucida-

tion are the Gravitational Force, the Electromagnetic Force, the Weak Interac-

tions, and the Strong Interactions. The gravitational and electromagnetic forces

are long range, and permeate our lives. Thus we are most familiar with them.

The gravitational force was first put on firm footing by Newton in 1678[1], and

brought into its modern relativistic formulation by Einstein in the 1910s[2, 3, 4].

In contrast, the weak and strong interactions act only on a distance scale of

' 10−15m.

The weak interactions, or Weak Nuclear Force only reveals itself in nuclear

physics, through the guise of nuclear beta decay. First observed in 1896 by Bec-

querel, it was not fully appreciated as an independent force until the Fermi Model

of The Weak Interaction in 1933[5]. The weak force culminated in the Elec-

troweak Unification. Described first by Glashow in 1961[6], and then modelled

as a spontaneously broken gauge theory by Weinberg and Salam in 1967[7, 8],

the so called Glashow-Weinberg-Salam Model was shown to be a renormalisable

quantum field theory by t’Hooft in 1971[9].

Thus the strong force remained to be described. The first categorical effort

to describe the then known spectrum of mesons and baryons was the Eightfold

Way of Gell-Mann in 1961[10]. This was to the elementary particles what the

periodic table of Mendeleev was to the chemical elements, arranging the mesons
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1.2. Quantum Chromodynamics 1. INTRODUCTION & THEORY

and baryons into multiplets, namely the spin-1/2 baryon octet, the pseudo-

scalar meson octet and the spin-3/2 baryon decuplet. Following this, in 1964

Gell-Mann and Zweig independently suggested that the hadrons were composed

of fundamental particles, called quarks [11, 12]. At this time there were only

three flavours of quarks proposed. However, the 1974 coinciding discovery of

the ψ particle at Brookhaven by Ting and the J particle at Stanford by Richter

in the so-called November Revolution introduced a fourth flavour of quark[13,

14]. These two particles were in fact one and the same thing, however the

disagreement in naming it led to it baring both names as the J/ψ particle. This

fourth quark flavour had in fact been proposed four years earlier in 1970 by

Glashow, Iliopoulos and Maiani to resolve a discrepancy in the calculated decay

rate of neutral K mesons with that of the experimentally measured rate[15].

At this time, the quark model was not readily accepted, but rather the fine

structure of the nucleons were described in terms of partons, as per Feynman’s

model[16]. It was not until deep inelastic scattering experiments at Stanford in

1968 showed that indeed the nucleons contained point-like scattering centres[17].

This led to the acceptance of the quark model, paving the way for the gauge

theory of Quantum Chromodynamics.

1.2 Quantum Chromodynamics

The Simple Quark Model [18] aims to predict the hadronic states as the combina-

tion of six quarks, the u, d, s, c, b and t quarks, or the Up, Down, Strange, Charm,

Beauty and Truth quarks respectively. In this model the hadrons are classed as

either Mesons, composed of one quark and one antiquark qq̄, or Baryons, com-

posed of three quarks (qqq) or three antiquarks (q̄q̄q̄). Thus the quarks must

have a baryon number of 1/3 as well as an electric charge in multiples of ±1/3.

Quantum Chromodynamics, a non-Abelian gauge theory[19], goes beyond

this simple quark model. According to Quantum Chromodynamics there ex-

ists another quantum number which the quarks and antiquarks possess, the

Colour Charge[20, 21], denoted by Red, Green and Blue or Anti-Red, Anti-Green

and Anti-Blue respectively. This colour force is flavour blind such that it acts

equally on all flavours of quark. Moreover, as per Quantum Chromodynamics,
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the colour force is described as being mediated by massless spin−1 vector gauge

bosons, called Gluons. Due to the non-Abelian nature of Quantum Chromo-

dynamics, these gluons also possess colour charge, whence they participate in

self-interactions.

In 1973 it was found by Politzer[22], Gross and Wilczek[23] that the dy-

namics of Quantum Chromodynamics predicted a scaling behaviour referred to

as Asymptotic Freedom[24], whereby the strength of the strong interactions de-

creases with increasing energy. This was attributed to the non-Abelian nature

of Quantum Chromodynamics, and the gluonic self-interactions that come with

this property. In addition, it was seen that non-Abelian gauge theories are the

only class of quantum field theory which display this asymptotic freedom[25],

cementing the place of Quantum Chromodynamics as the theory of the strong

interactions.

1.3 The Quantum Chromodynamics Lagrangian

Quantum Chromodynamics is described by the SU(3)-colour Lie group[26],

which is non-Abelian. This has Lie bracket commutation relations

[Ta, Tb] = ifabcT
c (1.1)

where the Ti are the Generators of the associated Lie algebra and the fabc are

the Structure Constants. Now, there are two fundamental degrees of freedom,

the fermionic matter fields, and the bosonic gauge fields. The Lagrangian is

then

L =
6∑

a=1

[
1

2
iq̄a(x)γµ

↔
Dµq

a(x)−maq̄
a(x)qa(x)

]
− 1

4
Ga
µνG

µνa (1.2)

where the sum over a is the sum over the quark flavours u, d, s, c, b and t, and

the

Ga
µν = ∂µB

a
ν (x)− ∂νBa

µ(x) + gfabcB
b
µ(x)Bc

ν(x) (1.3)
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1.4. Lattice Quantum Chromodynamics 1. INTRODUCTION & THEORY

are the Chromomagnetic Field Strength Tensors and the Bµ(x) are the Chromo-

magnetic Field Potentials. Furthermore,
↔
Dµ is the Covariant Derivative

Dµ = ∂µI −
1

2
igλaBa

µ (1.4)

with the λa being the Hermitian, traceless Gell-Mann Matrices given by

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2


(1.5)

These are twice the generators such that

T a =
λa

2
(1.6)

Finally, g is the Coupling Constant.

1.4 Lattice Quantum Chromodynamics

Owing in part to the non-Abelian nature of Quantum Chromodynamics, in its

early years only perturbative calculations were possible. However the lattice for-

mulation of Quantum Chromodynamics by Wilson in 1974[27] allowed research

to enter the non-perturbative regime using computational methods. Lattice

Quantum Chromodynamics was developed to help explain asymptotic freedom

without the need for gauge fixing[28]. Indeed, using an expansion to lowest

order in the inverse coupling constant Wilson was able to show confinement in

strongly coupled lattice Quantum Chromodynamics[27].
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1.4. Lattice Quantum Chromodynamics 1. INTRODUCTION & THEORY

So called Lattice Gauge Theories define Quantum Chromodynamics mathe-

matically, and thus allow for the simulation of any system. However, the limita-

tions of computational expense must be taken into account. To compute matrix

elements, the system must be transformed to Euclidean time, and the Green

functions calculated. Finally, the continuum limit must be taken as part of the

renormalisation approach[29, 30].

Unfortunately problems arise when Quantum Chromodynamics is consid-

ered on a lattice. The foremost of these is the problem of Fermion Doubling.

Here, fermionic fields on the lattice introduce extra contributions to correlation

function integrals, namely 2d contributions for a d-dimensional system, when in

the continuum limit all but one of these should vanish. This has its origins in

the use of symmetric lattice derivatives which respect hermiticity, locality and

translational invariance as per Nielson[31].

This leads to the introduction of the Wilson Action[32] for so-called Wilson

fermions in order to eliminate the fermion doubling problem. Yet again this in-

troduces new problems though, as these Wilson fermions break chiral symmetry.

This is the symmetry whereby left-handed and right-handed fermions transform

independently under rotations in two dimensions.

In response to this undesired broken symmetry, the method of Staggered

Fermions was introduced by Susskind and Kogut[33, 34, 35]. These staggered

fermions correspond to fermions which have an effective lattice spacing of twice

that of the fundamental lattice spacing. This works to eliminate the unwanted

doubled fermions. Once again, this approach brings its own problems, here mak-

ing for complicated construction of the quantum fields that are to populate the

lattice[36]. It is this staggered approach to lattice Quantum Chromodynamics

calculations that dominates.

Once a lattice approach has been chosen, and the required calculation set

up, Monte Carlo Simulations are used to approximately calculate the path inte-

gral. For this, a state is generated randomly from the set of possible states, and

the integral approximated. This process is then repeated for a large number of

steps N , and the results summed. On completion of the sampling the result is

renormalised with respect to the number of steps. This method however intro-

duces new statistical errors to the calculation, due to the probabilistic nature
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of the Monte Carlo method random sampling. This can be reduced by a factor

of 1/
√
N by taking a large number of steps, however this again increases the

computational expense of a calculation. These errors are compounded by the

so-called systematic errors which arise due to the finite lattice spacing, and also

the finite volume of space over which the calculation is performed.

Another error is introduced in the form of the Quenched Approximation, also

known as the valence quark approximation, first used by Weingarten and Parisi

in 1981[37, 38]. This approximation amounts to neglecting the virtual quark-

antiquark pairs and gluons which may be created at any moment on the lattice.

That is, it neglects the quark sea, and considers only the interactions of the

valence quarks. This has the benefit of greatly speeding up calculation times.

Moreover, it can give results within about 10% of the accepted values, as the

hardonic spectrum calculations of the Japanese CP-PACS collaboration showed

in 1998[39].

Modern calculations may be performed using ‘full Quantum Chromodynam-

ics’, moving beyond the quenched approximation, thanks to increasingly power-

ful computers and innovative algorithms. Such machines as those of the QCDSP

at the RIKEN Brookhaven Research Centre and at Columbia University[40],

and the UKQCD machine at the University of Edinburgh[41] are capable of per-

forming billions of floating point operations per second on heavily parallelised

computers.

These collaborations have been able to calculate increasingly accurate spectra

of the hadrons. Furthermore, the calculation of exotic mesons such as those

predicted by the Gluon-Flux Tube Model are made possible, as well as those

of so-called Glueballs. It has in fact been found that recent glueball masses

simulated with (2 + 1)flavours of sea quarks[42], namely the strange quark and

small mass up and down quarks, show negligible changes to the mass predicted

by those calculations without sea quarks[43]. Currently the lightest predicted

scalar glueball is know as the fj(1710) particle[44].

6



1.5. The Lattice Quantum Chromodynamics Lagrangian
1. INTRODUCTION & THEORY

1.5 The Lattice Quantum Chromodynamics

Lagrangian

At its core, lattice Quantum Chromodynamics is a non-perturbative method

to evaluate the path integral of Quantum Chromodynamics, by considering a sys-

tem of quarks and gluons on a grid of space-time points, namely with quarks on

the lattice sites and gluons in the lattice spacings, referred to here as Links. For

a grid of lattice spacing a we have an automatic momentum cut-off of order1/a

called the Regulator. Hence lattice Quantum Chromodynamics is a mathemati-

cally well defined quantum field theory, in the sense that it is renormalisable.

To go from a quantum field theory to a lattice quantum field theory one

must perform a Wick Rotation of space-time to a Euclidean lattice t→ iτ and

then discretise the Euclidean action SE in such a way as to regain the physical

space-time action as a→ 0.

From the action for fermions

SF (ψ, ψ̄, A) =

nf∑
f=1

∫
d4x ψ̄f (x)( /D +mf )ψ

f (x) (1.7)

where nf is the number of quark flavours, the derivative is a finite differential

operator which may be discretised as

∂µψ(x) =
1

2a
[ψ(n+ µ)− ψ(n− µ)] (1.8)

giving

SlattF (ψ, ψ̄) = a4
∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ

2a
[ψ(n+ µ̂)− ψ(n− µ̂) +mψ(n)]

)
(1.9)

which describes free fermions.

The Link Matrices Uµ with Uµ ∈ SU(3) are defined by

Uµ = exp(iaAµ) (1.10)
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1.6. The Path Integral Formalism 1. INTRODUCTION & THEORY

with

U−µ(n) ≡ U †µ(n− µ̂) (1.11)

Therefore

SlattF (ψ, ψ̄) = a4
∑
n∈Λ

ψ̄(n)

[
4∑

µ=1

(
Uµ(n)ψ(n+ µ̂)

2a
− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)]
(1.12)

and this is the Lattice Action for Fermions. Here there are fermions in a back-

ground gauge field such that the fermions interact with the gluons, but there

are no gluonic self-interactions.

1.6 The Path Integral Formalism

The time evolution of a quantum mechanical system is given by the Schrödinger

equation

|ψ(t) > = exp (−iH(t− t0)) |ψ(t0) > (1.13)

where H is the Hamiltonian of the system.

For a classical system, the time evolution is given by Lagrange’s equations

of motion, which may be found by taking a variation in the action of the system

and then using Hamilton’s principle of least action. To proceed to a quantum

system the equations of motion are written in terms of the Hamiltonian and

the Poisson brackets. Then by the process of canonical quantisation a quantum

mechanical system is obtained.

Here the Poisson bracket is promoted to the Commutator

{., .} → [., .] (1.14)

and the canonical commutation relations are defined as

[φ(~x, t), φ(~y, t)] = 0 (1.15)

[φ(~x, t), π(~y, t)] = iδ(3)(~x− ~y) (1.16)

with the former preserving causality, and the latter mimicking the quantum

mechanical commutator.
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1.6. The Path Integral Formalism 1. INTRODUCTION & THEORY

However, in this method the original principle of least action has been lost.

As per Feynman[45], a representation for the Green function may be derived,

such that the connection to the principle of least action is retained.

Considering the Heisenberg picture of quantum mechanics, in which opera-

tors are time dependent such that

Q(t) = exp(iHt)Q exp(−iHt) (1.17)

with instantaneous eigenstates

|q, t > = exp(iHt)|q > (1.18)

giving

Q(t)|q, t > = exp(iHt)Q exp(−iHt) exp(iHt)|q >

= q|q, t > (1.19)

Thus

< q′′, t′′|q′, t′ > = < q′′| exp[−iH(t′′ − t′)]|q′ >

or

< q′′, t′′|q′, t′ > = < q′′| exp[−iH(N + 1)ε]|q′ > (1.20)

with

t′′ − t′ = (N + 1)ε

Inserting a complete set of eigenstates with∫ ∞
−∞

dq |q >< q| = 1

yields

< q′′, t′′|q′, t′ > =

∫ ∞
−∞

N∏
j=1

dqj < q′′| exp(−iHε)|qN >< qN | exp(−iHε)|qN−1 >< qN−1|×. . .

· · · × |q1 >< q1| exp(−iHε)|q′ >

9



1.6. The Path Integral Formalism 1. INTRODUCTION & THEORY

In general

exp(A) exp(B) 6= exp(A+B)

for [A,B] 6= 0. But by Baker-Cambell-Hausdorff

exp[λ(A+B)] ' exp(λA) exp(λB) exp(1/2λ2[A,B]) . . . (1.21)

or for ε� 1

exp(−iHε) ' exp(−iP 2ε/2m) exp(−iV (Q)ε) (1.22)

where

H =
P 2

2m
+ V (Q) (1.23)

This gives

< qj+1| exp(−iHε)|qj >=

∫ ∞
∞

dp1 < qj+1| exp(−iP 2ε/2m)|p1 >< p1| exp(−iV (Q)ε)|qj >

=

∫ ∞
∞

dp1 exp(−iP 2ε/2m) exp(−iV (Q)ε) < qj+1|p1 >< p1|qj >

=

∫ ∞
∞

dp1

2π
exp(−iP 2ε/2m) exp(−iV (Q)ε) exp(ip1qj+1) exp(−ip1qj)

=

∫ ∞
∞

dp1

2π
exp[−iH(p1, qj)ε] exp[ip1(qj+1 − qj)] (1.24)

So letting q0 = q′ and qN+1 = q′′ yields

< q′′, t′′|q′, t′ >=

∫ ∞
−∞

N+1∏
k,j=0

dqkdpj
2π

exp[−iH(pj, qj)ε] exp[ipj(qj+1 − qj)] (1.25)

Then taking the limit as ε→ 0 and N →∞ gives

lim
ε→0
N→∞

< q′′, t′′|q′, t′ >=

∫ ∞
−∞

DpDq exp

[
i

∫ t′′

t′
dt(pq̇ −H)

]
(1.26)

where

Dp =
N+1∏
k=0

dpk√
2π

and Dq =
N+1∏
j=0

dqj√
2π

Here H is Weyl Ordered such that it does not contain terms or the form piqj.

Moreover, it is quadratic in p, and so taking the Stationary Phase is equivalent

10



1.7. Bound Quark-Antiquark Mesons 1. INTRODUCTION & THEORY

to computing the integral explicitly. Thus

∂

∂p

(
i

∫ t′′

t′
dt(pq̇ −H)

)
= 0

whence

q̇ =
∂H
∂p

(1.27)

Hence solving for p = p(q̇) and substituting in for H removes the need to inte-

grate over Dp. Moreover, since pq̇−H is the reverse of a Legendre Transforma-

tion this yields

< q′′, t′′|q′, t′ >=

∫ ∞
−∞

Dq exp

[
i

∫ t′′

t′
dtL(q, q̇)

]
(1.28)

and this is the desired Path Integral.

1.7 Bound Quark-Antiquark Mesons

In the quark model a bound state of any quark and its corresponding antiquark is

allowed. These particles are mesons known as Quarkonia. The light quarks, the

u, d, and s, are relativistic, and thus the Schrödinger equation is not applicable,

their study requiring a quantum field theoretic approach. The heavy mesons on

the other hand, that is the c, b, and t, may be analysed in the non-relativistic

regime. However the strong interactions are much more complicated than that

of the electromagnetic force with governs the Hydrogen atom, say, and so an

analytic solution is not attainable.

At short distances, due to asymptotic freedom, it is expected that the strong

interactions have a Coulombic

V (r) ∝ 1

r

potential. Moreover, a fine structure behaviour similar to that of positronium is

expected[46, 47]. At large ranges however the confinement behaviour of quarks

takes over, and the model breaks down.

Before the discovery of the J/ψ particle (see 1.1), Appelquist and Politzer[48,

49] predicted that the charm quark should behave non-relativistically, and thus

11



1.7. Bound Quark-Antiquark Mesons 1. INTRODUCTION & THEORY

that it should form bound states cc̄. After the discovery of the J/ψ particle,

many other energy states of bound cc̄ quarks were found[50]. These are the

spin-0 singlet state ηc, the spin-1 triplet states ψ, ψ′, ψ′′ and ψ′′′ and the P-wave

states χc0, χc1 and χc2. Here the successive dashes correspond to successively

higher energy levels of the ψ particle. The energy spectrum of these states was

even found be similar to that of positronium.

Those cc̄ states for energy levels n = 1, 2 are relatively long lived with life-

times of the order ' 10−20. This is because they are both below the thresh-

old for D meson production, as well as the fact that the Okubo-Zweig-Iizuka

rule[51, 52, 53, 54] suppresses their strong decay. This is because the gluons

involved in the decay

cc̄→ ud̄+ dd̄+ dū

corresponding to a cc̄ particle decaying into three pions are high energy ‘hard’

gluons, and thus they couple weakly due to asymptotic freedom.

However, for energy levels above n = 3 the production of D mesons becomes

possible, and the cc̄ particles have shortened lifetimes. These quasi-bound cc̄

states have been observed for energy levels up to n = 5.

In addition, bound states of two beauty quarks are possible. Again, before

the discovery of the b quark, Eichten and Gottfried[55] predicted the existence

of such bound states in 1976. One year later the Υ meson was discovered. Since

then, spin-1 states up to n = 6 have been observed, as well as P-wave states for

n = 2 and n = 3.

Due to the large mass of the beauty quark, b and b̄ quark pairs form three

energy levels of bound states. Despite this however, the bb̄ spectrum is again

similar to that of the cc̄[56].

Recent construction of B-factories[57] in the search for CP violation in the

decay of B mesons as suggested by Carter and Sanda in 1981[58] has led to re-

newed study of cc̄ mesons with greatly improved statistics, as they are produced

en mass at these facilities.

Unlike the charm and beauty quarks, there does not exist bound states tt̄ of

the truth quark. This is because it is too massive, and therefore its lifetime too

short to form bound states.
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1.8. Allowed Quarkonium Quantum States 1. INTRODUCTION & THEORY

1.8 Allowed Quarkonium Quantum States

For a quarkonium meson, composed of a bound state of two spin-1/2 fermions,

the allowed Total Spin states are S = 0, 1 for the spin-singlet and spin-triplet

respectively. Then, for a meson with orbital angular momentum L the Total

Angular Momentum J is given by

~J = ~L+ ~S (1.29)

Atomic spectroscopic notation may be used to denote an excitation state of a

particle as JPC , where P and C are the particles Parity and Charge Conjugation

quantum numbers respectively, given for a bound state of a quark-antiquark pair

by[59]

P = (−1)L+1 and C = (−1)L+S (1.30)

Now, for a quarkonium meson in the ground state with L = 0 the allowed

total angular momentum is J = 0, 1 for total spin states S = 0, 1 respectively,

and so the allowed quantum states are JPC = 0−+, 1−−. These are both s-wave

states and correspond to the ηc and J/ψ particles respectively.

For P-wave states with L = 1 the allowed total angular momentum is J = 1

or J = 0, 1, 2 for total spin states S = 0, 1 respectively, and so here the allowed

quantum states are JPC = 1+− for the spin-singlet and JPC = 0++, 1++, 2++ for

the spin-triplet.

Moreover, for a quarkonium meson with L = 2 the allowed total angular

momentum is J = 2 or J = 1, 2, 3 for total spin states S = 0, 1 respectively,

whence the allowed quantum states are JPC = 2−+ and JPC = 1−−, 2−−, 3−−.

These states are D-wave.

Finally, for F-wave states with L = 3 the allowed total angular momentum

is J = 3 or J = 2, 3, 4 for total spin states S = 0, 1 respectively, giving allowed

quantum states JPC = 3+− and JPC = 2++, 3++, 4++.
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Thence it is seen that the allowed quantum states are

0−+, 2−+, · · ·
1−−, 2−−, 3−−, · · ·

0++, 1++, 2++, 3++, · · ·
1+−, 3+−, · · ·

(1.31)

and so on.

1.9 Exotic Charmonium Quantum States

From the above it is clear that for a bound state of a quark-antiquark pair not

all quantum states are allowed. Namely, those states J+− for J even and J−+

for J odd. Moreover, the 0−− and 0+− states are not allowed. These states are

known as Exotic States.

However, there has been some experimental evidence to suggest the exis-

tence of such exotic charmonium states. The first of these exotic charmonium

like states was discovered by the Bell collaboration in 2003[60] when an un-

likely conventional charmonium candidate was found with a mass spectrum near

3872 MeV through the decay

B+ → K+ + π+ + π− + J/ψ

which came to be known as the X(3872) meson. This discovery was later con-

firmed by the BABAR team[61] and also in pp̄ collisions at the Tevatron by both

the CDF[62, 63, 64] and D/0[65]. Furthermore, decays of the X to a D∗0 and a

D̄0 pair were seen by both the BABAR[66] and Bell[67] collaborations.

In addition, vector charmonium-like states have been detected by the BABAR

team as early as 2005[68], which became known as the Y (4260) meson. This was

again seen by the BABAR collaboration in 2008[69], as well as by the CLEO[70]

and Belle[71] teams afterwards, in 2006 and 2007 respectively. What is more,

in 2007 the BABAR team found another state at 4360 MeV[72], which they

called the Y (4360) meson. Once again, this state was later found by the Belle

collaboration[73].

14
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Finally, some charmonium-like charged mesons have been found, which are

known as Z states, first seen by Belle in 2008[74], and have a minimal quark

substructure of cc̄ud̄. Thus they are manifestly exotic[75].

The first hints of the quark-sea came from deep inelastic scattering experi-

ments at Stanford in the late 1960s. They measured proton structure functions,

which describe the distribution of the proton’s momentum, and hence help to de-

scribe its internal structure. Later structure function measurements performed

at DESY found a distribution of momentum fractions, with few quarks hav-

ing a large fraction of the proton’s momentum. This suggested that there was

more than simply three valence quarks each carrying one third of the proton’s

momentum, but rather a whole ‘sea’ of gluons, quarks and antiquarks.

The first evidence of antiquarks in the proton were detected at the Gargamelle

Bubble Chamber at CERN in 1973. Here neutrinos and antineutrinos were used

in deep inelastic scattering experiments with protons. The fact that all neutrinos

are left-handed, while all antineutrinos are right-handed[76], due to their parity

violating nature, allows for the determination of quark flavour and antiquark

sensitivity.

Furthermore, the presence of strange quarks within the nucleon was found

by the Chicago-Columbia-Fermilab-Rochester Collaboration in di-muon exper-

iments preformed in 1974[77] at Fermilab. Here, an incoming muon neutrino

scattering off a strange quark in the nucleon becomes a muon, while the W+

boson which interacts with the strange quark creates a charm quark. This charm

quark in turn decays to give an anti-muon, and hence the signature of the process

is the detection of a pair of muons of opposite sign.

p+ νµ → µ−+c

↪→ µ+ + νµ + s (1.32)
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Figure 1.1: Neutrino deep inelastic scattering from a strange sea quark creates
a di-muon signature. Adapted from [78] with kind permission, copyright (2004)
Cambridge University Press

Following this, in 1996 the upgraded experiment, NuTeV, found evidence of

charm quarks inside the proton by the detection of so-called ‘wrong-sign’ muons.

In this experiment a muon neutrino scattering off a charm quark by exchange of

a neutral Z0 boson remains a neutrino. However the charm quark then decays

to again give a strange quark, a muon neutrino and an anti-muon.

Figure 1.2: Neutrino deep inelastic scattering from a charm sea quark creates an
antimuon signature. Adapted from [78] with kind permission, copyright (2004)
Cambridge University Press

The explanation of the existence of these states requires a more advanced

description, beyond that of the simple quark model.

The MIT Bag Model framework, developed by Johnson in 1974[79, 80] may
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be used to calculate a large number of interesting quantities and processes. It

has effectively been used to calculate the masses of the light hadrons[81], as well

as the spectrum of some unconventional hadron states such as qqq̄q̄[82] and even

pure gluonic states, known as glueballs[83]. Here, the confinement property is

reproduced by requiring that the colour current through some surface vanishes,

where the colour current is given by

Jaµ = (q̄r, q̄g, q̄b)λ
aγµ


qr

qg

qb

 (1.33)

with the subscripts here summing over the three colour charges red, green and

blue, and the λa are the eight colour-SU(3) Gell-Mann matrices. Then for a

normal vector nµ the boundary condition may be written as

nµJaµ = 0 (1.34)

for all a = 1, 2, . . . , 8. The quarks are then modelled as being constrained to stay

within this bag, inside of which there is a population of freely moving quarks of

all and any kind.

1.10 The Gluon Flux-Tube Model

Alternatively, the Gluon Flux-Tube Model [84] as introduced by Veneziano in

1968 may be used. Here the self interactions of gluons are taken into account.

This gives a spectrum closer to that of full Quantum Chromodynamics, and is

thus more populous than that of the simple quark model. This is because, even in

the absence of quarks, there remains a non-trivial interacting pure gauge theory

which has its own spectrum of states. Namely, the flux-tube model allows the

existence of multi-quark states, exotic hadrons, and also decays due to flux-tube

breaking.
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On the lattice, a flux-tube is a directed element such that the scalar

8∑
a=1

~Ea
2

has a definite non-zero eigenvalue, where ~Ea is the colour-electric field. These are

the links Uµ in the lattice spaces which join together quarks on the lattice sites

to form a gauge-invariant configuration. The excitation of this string can then

give rise to unconventional states which are not usually present in the simple

quark model. Furthermore, purely gluonic states correspond to closed loops of

links.

Thus the colour fields are constrained to strings. This again has its origins

in the gluonic self-interactions, and is in contrast to the Abelian case of an

electromagnetic field, say, in which the field lines go out in all directions (Fig.

1.3). The flux tube is in fact more like a flux sausage than a string.

Figure 1.3: (a) electric field lines between a positive and a negative electric
charge and (b) colour field lines between a quark and an antiquark. Adapted
from [85] with kind permission, copyright (1979) Nature

The Born-Oppenheimer Approximation is valid as the gluons move so fast

that their effect can be taken as an effective potential. This produces an interac-

tion strength that increases linearly with quark separation, such that the string

tension remains constant as the quark-antiquark pair are pulled apart. This
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model then reproduces quark confinement, as the energy needed to separate a

quark-antiquark pair is infinite.

Moreover, at a large distances, it becomes energetically more favourable to

create a quark-antiquark pair out of the vacuum rather than increase the length

of the flux tube, leading to two colourless mesons (Fig. 1.4).

Figure 1.4: As the quarks separate the energy expanded in pulling them apart
creates a quark-antiquark pair out of the vacuum resulting in two colourless
mesons. Adapted from [85] with kind permission, copyright (1979) Nature

However, this approach is only valid for large-scale Quantum Chromody-

namics. As the lattice constant a goes to zero, the flux-tube mixing will become

more and more complicated giving rise to very many flux-tube topologies as

gluon self-interactions become increasingly important.
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Chapter 2

Numerical Calculations of The

Radial Wavefunction

2.1 Schrödinger’s Equation for The Radial

Wavefunction

The Schrödinger Equation is written as

H|ψ > = E|ψ > (2.1)

where for a spherically symmetric potential

H =
−~2

2m
~∇2 + V (r) (2.2)

and so [
−~2

2m
~∇2 + V (r)

]
ψ(~r) = Eψ(~r) (2.3)

Using the method of separation of variables such that

ψ(~r) = R(r)Φ(φ)Θ(θ) (2.4)

gives [
−~2

2m
~∇2 + V (r)

]
R(r)Φ(φ)Θ(θ) = ER(r)Φ(φ)Θ(θ) (2.5)
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Now, in spherical polar coordinates

~∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(φ)

∂

∂φ

(
sin(φ)

∂

∂φ

)
+

1

r2 sin2(φ)

∂2

∂θ2
(2.6)

or

~∇2 =
2

r

∂

∂r
+

∂2

∂r2
+

1

r2 tan(φ)

∂

∂φ
+

2

r2

∂2

∂φ2
+

1

r2 sin2(φ)

∂2

∂θ2
(2.7)

This gives

{
−~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(φ)

∂

∂φ

(
sin(φ)

∂

∂φ

)
+

1

r2 sin2(φ)

∂2

∂θ2

]
+ V (r)

}
R(r)Φ(φ)Θ(θ) = ER(r)Φ(φ)Θ(θ)

and so

−~2

2m

[
Φ(φ)Θ(θ)

1

r2

d

dr

(
r2 d

dr

)
R(r) +R(r)Θ(θ)

1

r2 sin(φ)

d

dφ

(
sin(φ)

d

dφ

)
Φ(φ)

+ R(r)Φ(φ)
1

r2 sin2(φ)

d2

dθ2
Θ(θ)

]
+ [V (r)− E]R(r)Φ(φ)Θ(θ) = 0

Dividing across by R(r)Φ(φ)Θ(θ)~2/2m and subsequently multiplying across by

r2 sin2(φ) gives

− sin2(φ)

R(r)

d

dr

(
r2 d

dr

)
R(r)− sin(φ)

Φ(φ)

d

dφ

(
sin(φ)

d

dφ

)
Φ(φ)− 1

Θ(θ)

d2

dθ2
Θ(θ)

+ r2 sin2(φ)
2m

~2
[V (r)− E] = 0

which is separable such that

−sin2(φ)

R(r)

d

dr

(
r2 d

dr

)
R(r)−sin(φ)

Φ(φ)

d

dφ

(
sin(φ)

d

dφ

)
Φ(φ)+r2 sin2(φ)

2m

~2
[V (r)−E]

=
1

Θ(θ)

d2

dθ2
Θ(θ) (2.8)

Here the left hand side is independent of φ, while the right hand side is

independent of r and θ, and so each is equal to a constant, which may be set as
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−m2
l . Then

1

Θ(θ)

d2

dθ2
Θ(θ) = −m2

l (2.9)

whence

Θ(θ) = exp(imlθ) (2.10)

Furthermore,

−sin2(φ)

R(r)

d

dr

(
r2 d

dr

)
R(r)−sin(φ)

Φ(φ)

d

dφ

(
sin(φ)

d

dφ

)
Φ(φ)+

2m

~2
r2 sin2(φ)[V (r)−E]

= −m2
l

Dividing across by sin2(φ) gives

− 1

R(r)

d

dr

(
r2 d

dr

)
R(r)− 1

sin(φ)

1

Φ(φ)

d

dφ

(
sin(φ)

d

dφ

)
Φ(φ)+

2m

~2
r2[V (r)−E]

= − m2
l

sin2(φ)

which is again separable such that

− 1

R(r)

d

dr

(
r2 d

dr

)
R(r)+

2m

~2
r2[V (r)−E] = − m2

l

sin2(φ)
+

1

sin(φ)

1

Φ(φ)

d

dφ

(
sin(φ)

d

dφ

)
Φ(φ)

(2.11)

Again, each side is a constant, which can be chosen to be −l(l + 1), giving

− 1

R(r)

d

dr

(
r2 d

dr

)
R(r) +

2m

~2
r2[V (r)− E] = −l(l + 1)

or on multiplying across by −R(r)/r2

1

r2

d

dr

(
r2 d

dr

)
R(r)− 2m

~2
[V (r)− E]R(r) =

l(l + 1)

r2
R(r)

and so {
~2

2m

[
− 1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)

r2

]
+ V (r)

}
R(r) = ER(r) (2.12)
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or {
~2

2m

[
−2

r

d

dr
− d2

dr2
+
l(l + 1)

r2

]
+ V (r)

}
R(r) = ER(r) (2.13)

Now, choosing

U(r) = rR(r) (2.14)

it is seen that

d2

dr2
(U(r)) =

d2

dr2
(rR(r))

=
d

dr

(
r

d

dr
R(r) +R(r)

)
= r

d2

dr2
R(r) +

d

dr
R(r) +

d

dr
R(r)

or

− 1

r

d2

dr2
(rR(r)) = − d2

dr2
R(r)− 2

r

d

dr
R(r) (2.15)

Thus equation (2.13) is equivalent to

~2

2m

[
−1

r

d2

dr2
(rR(r)) +

l(l + 1)

r2
R(r)

]
+ V (r)R(r) = ER(r)

Multiplying across by r gives

~2

2m

[
− d2

dr2
(rR(r)) +

l(l + 1)

r2
(rR(r))

]
+ V (r) (rR(r)) = E (rR(r))

whence it is found that U(r) satisfies{
~2

2m

[
− d2

dr2
+
l(l + 1)

r2

]
+ V (r)

}
U(r) = EU(r) (2.16)

2.2 Simulations of The Cornell Potential

For the Cornell Potential, given by

V (r) = − π

12r
+ σr (2.17)
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where σ is the string tension with
√
σ ' 400 MeV, equation (2.16) becomes{

~2

2m

[
− d2

dr2
+
l(l + 1)

r2

]
− π

12r
+ σr

}
U(r) = EU(r) (2.18)

or [
d2

dr2
+

2m

~2

(
E +

π

12r
− σr − ~2

2m

l(l + 1)

r2

)]
U(r) = 0 (2.19)

Code was written using the C++ programming language to solve equation

(2.19). A void function was written to set up the initial potential. The code

was edited to read from the command line to allow the selection of a range of

different potentials, including the Cornell potential above. Furthermore, the

code was made to accept the input of an orbital angular momentum quantum

number lang.

In addition a void function was written to use the Numerov Three-Point-

Algorithm shooting method to numerically integrate for a trial solution energy

E from both the left and the right, by specifying the wavefunction U(r) at the

end-points and the next-to-end-points. Then by Numerov

Un+1(r) =
2(1− 5

12
l2k2

n)Un(r)− (1 + 1
12
l2k2

n−1)Un−1(r)

1 + 1
12
l2k2

n+1

(2.20)

where

l =
1

N − 1

is the step size for the discretise spatial variable, N is the number of points, and

kn = γ2[E − V (rn)]

with, for equation (2.19),

γ2 =
2m

~2

The system was solved using zero Dirichlet boundary conditions.

The Euler Difference was then used to numerically compute the approximate

slope of the function U(r) by

U ′(r) ' U(r + l)− U(r)

l
(2.21)

24



2.3. Further Potential Function Simulations
2. NUMERICAL CALCULATIONS OF THE RADIAL WAVEFUNCTION

and the difference between the left-shooting slope and the right-shooting slope

was thus computed.

The process was repeated for a new infinitesimally incremented trail solution

energy E + δE. Next the old-slope and new-slope were compared. Finally, an

accept/reject algorithm was written to accept the incremented trail energy, or

to reject it in favour of a new trial solution energy with a smaller infinitesimal

increment δE ′ = δE/2.

This process was repeated until the wavefunction was within an acceptable

threshold of a real solution.

Another void function was added to the code to output the radial wavefunc-

tion R(r) so that it may be plotted using Gnuplot.

2.3 Further Potential Function Simulations

Code was added to the .cpp file to allow for models of the Hydrogen atom radial

wavefunctions, where here

V (r) = −e
2

r
(2.22)

where e is the charge on the electron, whence substitution into equation (2.19)

yields [
d2

dr2
+

2m

~2

(
E +

e2

r
− ~2

2m

l(l + 1)

r2

)]
U(r) = 0 (2.23)

In addition, a potential function for the Gluon-Flux tube model

V (r) = −A1

r
+Br2 (2.24)

was added, where A amd B are some constants, to give[
d2

dr2
+

2m

~2

(
E + A

1

r
−Br2 − ~2

2m

l(l + 1)

r2

)]
U(r) = 0 (2.25)

2.4 Results & Analysis

The following graphs of the radial wavefunction R(r) versus the radial distance

r for electrons in the Hydrogen Atom potential were plotted
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In addition, graphs of the radial wavefunctions for quarks in the Cornell

Potential R(r) versus the radial distance r were plotted
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Figure 2.7: n = 3 States of A Charmonium in The Cornell Potential
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Figure 2.8: n = 4 States of Charmonium in The Cornell Potential

Finally, the following graphs of the radial wavefunctions for quarks in the

potential of the Gluon-Flux Tube Model were plotted
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Figure 2.9: n = 1 States of The Gluon-Flux Tube Model Charmonium
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Figure 2.10: n = 2 States of The Gluon-Flux Tube Model Charmonium
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Figure 2.11: n = 3 States of The Gluon-Flux Tube Model Charmonium
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Figure 2.12: n = 4 States of The Gluon-Flux Tube Model Charmonium

In addition, a graph of the spectrum of the excitation states of Charmonium

as calculated with the Cornell potential was plotted
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Figure 2.13: Charmonium Excitation States In The Cornell Potential
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as was that of the flux-tube potential
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Chapter 3

Lattice Charmonium

Spectroscopy

3.1 Correlation Function Calculations

A one-dimensional periodic set of quantum fields φk on the lattice are considered

for k = 0, 1, 2, . . . , N − 1 with action

S =
∑
k,k′

φk�k,k′φk′ (3.1)

where

�k,k′ = m2δk,k′ + (−δk,k′+1 − δk,k′−1 + 2δk,k′) (3.2)

Then the two-point correlation function

c(l) =

∫ ∞
−∞

∏
k

dφk φj+lφj exp(−S) (3.3)

may be given by

c(l) =
1

Z[0]

∂

∂Jj+l

∂

∂j
Z[J ]

∣∣∣∣
J=0

(3.4)

where

Z0[J ] =

∫ ∞
−∞

d[φ(x)] exp

(
iS[φ(x)] + i

∫ ∞
−∞

J(x)φ(x)

)
(3.5)
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is the generating functional, with J a source field, or on transforming to Eu-

clidean time t→ iτ

Z0[J ] =

∫ ∞
−∞

d[φ(x)] exp

(
−S[φ(x)] +

∫ ∞
−∞

J(x)φ(x)

)
(3.6)

This is simply

< 0|φj+lφj|0 > (3.7)

Here there is nearest neighbour coupling only, whence k′ = k gives

�k,k = m2 + 2

while k′ = k − 1 gives

�k,k−1 = −1

and k′ = k + 1 gives

�k,k−1 = −1

yielding

S =
∑
k

(m2 + 2)φ2
k − φkφk−1 − φkφk+1 (3.8)

Hence the action may be written as a matrix

S =
∑
m,n

φmMm,nφn (3.9)
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where M is a tri-diagonal symmetric matrix, and invertible if det(M) 6= 0,

whence M is solvable, with

M =



(m2 + 2) −1 0 0 · · ·
−1 (m2 + 2) −1 0 · · ·
0 −1 (m2 + 2) −1 · · ·
0 0 −1 (m2 + 2) · · ·
...

...
...

...
. . .


This gives

Z0[J ] =

∫ ∞
−∞

∏
k

dφk exp

(∑
m,n

φmMm,nφn +
∑
n

Jnφn

)
(3.10)

Making an orthogonal transformation

M̃ = RMR−1

where RT = R−1 so that

φ→ φ̃ = Rφ and J → J̃ = RJ

yields

S =
∑
k

λkφ̃k
2

+ J̃kφ̃k (3.11)

where the λk are the eigenvalues of M. Here R is an orthogonal transformation

and so the measure is invariant such that

∏
k

dφ̃k =
∏
k

dφk

Then

Z0[J ] =

∫ ∞
−∞

∏
k

dφ̃k exp

(
−
∑
k

λkφ̃k
2

+ J̃kφ̃k

)

=
∏
k

{∫ ∞
−∞

dφ̃k exp
(
−λkφ̃k

2
+ J̃kφ̃k

)}
(3.12)
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and this is a Gaussian integral. But for a Gaussian integral∫ ∞
−∞

dx exp(−x2) =
√
π (3.13)

and so completing the square

− (λkφ̃k
2 − J̃kφ̃k) = −

(√
λk φ̃k −

J̃k

2
√
λk

)2

+
J̃k

2

4λk
(3.14)

gives

Z0[J ] =
∏
k


∫ ∞
−∞

dφ̃k exp

−(√λk φ̃k −
J̃k

2
√
λk

)2

+
J̃k

2

4λk


=
∏
k

exp

(
J̃k

2

4λk

)∫ ∞
−∞

dφ̃k exp

−(√λk φ̃k −
J̃k

2
√
λk

)2
 (3.15)

Letting

φ̂k =
√
λk φ̃k −

J̃k

2
√
λk

whence

dφ̂k =
√
λ dφ̃k

yields

Z0[J ] =
∏
k

{
exp

(
J̃k

2

4λk

)∫ ∞
−∞

dφ̂k√
λk

exp
(
−φ̂k

2
)}

=
∏
k

1√
λk

exp

(
J̃k

2

4λk

)(√
π
)

=
∏
k

√
π

λk
exp

(
J̃k

2

4λk

)
(3.16)

or

Z0[J ] =

√
π

det(M)
exp

(
1/4

∑
k,k′

J̃kM
−1
k,k′ J̃k′

)
(3.17)
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where in a general basis

∏
k

√
1

λk
= [det(M)]−1/2 and

∏
k

exp

(
J̃k

2

4λk

)
= exp

(
1/4

∑
k,k′

J̃kM
−1
k,k′ J̃k′

)

Hence

c(l) =
1

Z[0]

∂

∂Jj+l

∂

∂j

{√
π

det(M)
exp

(
1/4

∑
k,k′

J̃kM
−1
k,k′ J̃k′

)}∣∣∣∣∣
J=0

=

√
π

det(M)

1

4
M−1

j+l,j (3.18)

It remains to find the eigenvalues, and thus the inverse matrix elements M−1
k,k′ .

Well, ∑
`

Mk,`M
−1
`,k′ = δk,k′ (3.19)

Furthermore, by Fourier

f(x) =
1√
π

∫ ∞
−∞

f̃(k) exp(ikx)dk (3.20)

where

f̃(k) =
1√
π

∫ ∞
−∞

f(x) exp(−ikx)dx (3.21)

Now, in four dimensions the Dirac-delta function may be written

δk,k′ =

∫ ∞
−∞

d4p

(2π)4
exp[ip(k − k′)] (3.22)

Thus the matrix M may be written

Mk,k′ =

∫ ∞
−∞

d4p

(2π)4
M̃(p) exp[ip(k − k′)] (3.23)

where

M̃(p) =

∫ ∞
−∞

M(k) exp(−ipk)dk (3.24)

=

∫ ∞
−∞

[
m2δk,k′ + (−δk,k′+1 − δk,k′−1 + 2δk,k′)

]
exp(−ipk)dk
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Then making substitutions for the Dirac-delta functions using equation (3.22)

and using the trigonometric identity

1− cos(p) = sin2(p/2)

gives

˜M(p) =
1

(2π)4

(
m2 + 4 sin2(p/2)

)
(3.25)

Hence

Mk,k′ =

∫ ∞
−∞

d4p

(2π)4

(
1

(2π)4

(
m2 + 4 sin2(p/2)

))
exp[ip(k − k′)] (3.26)

Letting

M−1
k,k′ =

∫ ∞
−∞

d4p

(2π)4
G(k) exp[ip(k − k′)] (3.27)

for some Green function G(k) such that

�G(k) = δ(k) (3.28)

with

∑
`

Mk,`M
−1
`,k′ = δk,k′

=

∫ ∞
−∞

d4p

(2π)4
exp[ip(k − k′)] (3.29)

or

∑
`

∫ ∞
−∞

d4p

(2π)4

(
1

(2π)4

(
m2 + 4 sin2(p/2)

))
exp[ip(k−`)]

∫ ∞
−∞

d4p′

(2π)4
G(k) exp[ip(`−k′)]

=

∫ ∞
−∞

d4p

(2π)4
exp[ip(k − k′)]

yields

G(k) = (2π)4 1

m2 + 4 sin2(p/2)
(3.30)
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whence

< 0|φj+l(x)φj(x)|0 > =M−1
j+l,j

=

∫ ∞
−∞

d4p
1

m2 + 4 sin2(p/2)
exp(ipl) (3.31)

Putting z = k − k′ for ease, it is seen that

M−1
k,k′ =

∫ ∞
−∞

d3~p exp(−i~p · ~z)

∫ ∞
−∞

dp0 1

m2 + 4 sin2(p/2)
exp(ip0z0) (3.32)

Now, this has poles for

4 sin2(p/2) +m2 = 0 (3.33)

whereupon

sin(p/2) =
im

2
or sin(p/2) =

−im
2

(3.34)

or

p+ = 2 sin−1

(
im

2

)
or p− = −2 sin−1

(
im

2

)
(3.35)

But,

sin(x) =
exp(ix)− exp(−ix)

2i
and sinh(x) =

exp(x)− exp(−x)

2
(3.36)

and so

i sin(ix) =− sinh(x) (3.37)

Hence for p0 purely imaginary, such that

p0 = 0 + iq and dp0 = idq

equation (3.34) gives

−i sin(iq/2) =
±m

2

or

sinh(q/2) =
±m

2
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and so

q+ = 2 sinh−1
(m

2

)
or q− = −2 sinh−1

(m
2

)
(3.38)

Now, by Cauchy ∫
γ

f(z)dz = 2πi
∑
j

n(wj, γ)Resz=wj
f(z) (3.39)

with

Resz=wj
f(z) = lim

z→wj

(z − wj) f(z)

=
g(wj)

h′(wj)
(3.40)

if

f(z) =
g(z)

h(z)

Here ∫
γ

f(q)dq =

∫
γ

i dq
exp(−qz0)

m2 + 4 sin2(iq/2)

=

∫
γ

dq

i

exp(−qz0)

−m2 + 4[−i sin(iq/2)]2

=

∫
γ

dq

i

exp(−qz0)

−m2 + 4 sinh2(q/2)
≡
∫
γ

g(q)

h(q)
dq (3.41)

where

g(q) = exp(−qz0) and h(q) = i[−m2 + 4 sinh2(q/2)] (3.42)

and thus

Resq=q+f(q) =
g(q+)

h′(q+)

=
1

i

exp(−q+z0)(
−m2 + 4 sinh2(q/2)

)′ |q=q+
=

1

i

exp(−q+z0)

(2 sinh(q)) |q=q+

=
1

i

exp(−2 sinh−1(m/2)z0)

2 sinh
(
2 sinh−1(m/2)

) (3.43)
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Choosing a path γ in the right half-plane such that the winding number about

q+ is one, while that of q− is zero yields

∫
γ

f(q)dq = 2πi

{
(1)

(
1

i

exp(−2 sinh−1(m/2)z0)

2 sinh
(
2 sinh−1(m/2)

) )+ (0)

}
=

π

sinh
(
2 sinh−1(m/2)

) exp(−2 sinh−1(m/2)z0) (3.44)

or ∫
γ

f(q)dq ≡ C(m) exp(−2 sinh−1(m/2)z0) (3.45)

with

C(m) =
π

sinh
(
2 sinh−1(m/2)

)
But z0 = k0−k′0 is the time separation, and so it is found that the two-point

correlator is an exponential function of the mass of the particle m, and the time

separation such that

< 0|φk(x)φk′(x)|0 > = M−1
k,k′ = C(m) exp[−2 sinh−1(m/2)(k0 − k′0)] (3.46)

Thus it is seen that the two-point correlation function for a quantum chromo-

dynamical process falls off exponentially in time with the mass of the particle.

3.2 Monte Carlo Simulations

From above the two-point correlation function is

Cij(t1) = < 0|Φi(t1)Φ†j(0)|0 > (3.47)

where the Φi are operators of Dirac spinors and the Dirac matrices such that

Φk =
∑
x

c̄α(x)γαβk cβ(x) or Φ` =
∑
x

c̄α(x)γαβ` (DmDn +DnDm)cβ(x)
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say. Taking a Euclidean transformation t→ −iτ the Heisenberg operator picture

yields

Cij(t1) = < 0| exp(Ht1)Φi(t1) exp(−Ht1) exp[H · (0)]Φ†j(0) exp[−H · (0)]|0 >

= < 0|Φi(t1) exp(−Ht1)Φ†j(0)|0 > (3.48)

Then on inserting a complete set of states |n >< n| it is seen that

Cij(t1) =
∑
n

< 0|Φi(t1) exp(−Ht1)|n >< n|Φ†j(0)|0 >

=
∑
n

< 0|Φi(t1)|n >< n|Φ†j(0)|0 > exp(−Ent1)

=
∑
n

ZinZ
∗
nj exp(−Ent1) (3.49)

where

Zin = < 0|Φi(t1)|n > and Z∗nj = < n|Φ†j(0)|0 > (3.50)

On the lattice this exponential becomes

exp(−Ent1) → exp

(
−(Enat)

t1
at

)
(3.51)

where at is the lattice spacing. Thus the the two-point correlation function

equation becomes a generalised eigenvalue problem

Cij(t1) = λn(t0, t1)C(to) ~vn (3.52)

where λn(t0, t1) is the generalised eigenvalue with

λn(t0, t1) ∝ exp[−En(t1 − t0)] (3.53)

However this is only true in the limit as

t1 − t0 →∞
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which is not always the case.

For a large enough time separation t1 − t0 equation (3.53) can be taken to

hold. Then, fitting to an exponential decay gives the ground state energy E1.

Furthermore, for a large set of operators Ψi(t) the excited state energies can also

be computed[86].

A fit to the randomly generated data C̄ij(t1 − t0) must be calculated for the

correlation functions for a given set of Quantum Chromodynamics operators.

This is done by performing a Chi-Squared Test. Here

χ2 =
∑
i,j,n,t0

(
C̄ij(t1 − t0)− Cij(En, Zin, Znj, t0 − t1)

)2

σ2
ij

(3.54)

where σ2
ij is the variance in the randomly generated Monte Carlo data. This

must be minimised with respect to {En} and {Zij} for a global minimum such

that

∂χ2

∂E0

=
∂χ2

∂E1

= · · · = 0

∂χ2

∂Z11

=
∂χ2

∂Z12

= · · · = ∂χ2

∂Z21

=
∂χ2

∂Z22

= · · · = 0 (3.55)

Then, if

χ2 ' n (3.56)

the fit is within one standard deviation of the Monte Carlo data, and the energy

spectrum may be confidently extracted.

3.3 Variational Data Fitting

The variational fitter code was run to fit exponential decaying curves to a

range of sets of operators from the T−−1 and T−+
1 symmetry point groups.

The two ρ operators of the T−+
1 group were fitted for correlation times of

4 ≤ t0 ≤ 17. This was followed by fitting the remaining sixteen operators of the

T−+
1 group for correlation times of 4 ≤ t0 ≤ 14. Finally, all eighteen operators

of the T−+
1 group were fitted simultaneously for 3 ≤ t0 ≤ 15.

In addition, both the eight ρ and the eight ρ along with the two π operators of
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the T−−1 group were analysed using the variational fitter code for correlation

times of 4 ≤ t0 ≤ 14 and 3 ≤ t0 ≤ 15 respectively. The code was also run to fit

all twenty-six operators of the T−−1 group simultaneously.

Masses were then extracted from that data which had an acceptable χ2

value. The scale is set by using the fitting the Ω−− meson mass times the lattice

constant to the value quoted in the particle data group[87], which gives a value

of the lattice constant of a−1
t = 5.667 GeV.

3.4 Results & Analysis

The Monte Carlo data was found to fit with the theoretical values for the two

ρ operators of the T−+
1 symmetry point group with acceptable χ2 values for

Euclidean time separations 12 ≤ t ≤ 17. This corresponded to a mass of 4.235±
0.011 GeV where the fitting was performed over the range 5 ≤ tmin /max ≤ 18.

Furthermore the data was successfully fitted for the sixteen remaining op-

erators of the T−+
1 group with acceptable χ2 values for Euclidean time sepa-

rations 9 ≤ t ≤ 13. In this case this corresponded to a mass parameter of

4.239±0.026 GeV where the fitting was performed over the range 8 ≤ tmin /max ≤
18.

Finally, for all eighteen operators of the T−+
1 group the variational fitting

was successful with χ2 ' n for time separations of 9 ≤ t ≤ 15. This may

be interpreted as a particle with mass 4.211 ± 0.011 GeV where the fitting was

performed over the range 5 ≤ tmin /max ≤ 18.

Thus it is clear that the two ρ operators give the greatest contributions to

the physical state of the T−+
1 group as the the fitting starts for an earlier range

of timeslices than that of the other sixteen operators of the group. This in turn

allows for the extraction of a mass parameter with the smallest error range, as

the signal to noise ratio is greatest for earlier timeslices.

From the variational fitting performed with the T−−1 symmetry point group

operators it was found that χ2 was not within the acceptable range for any time

separations for the eight ρ and the eight ρ plus the two π operators. Hence it is

seen that there are no gluonic states in the T−−1 symmetry point group.

However, the data was found to fit with that of all twenty-six operators of
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the T−−1 symmetry group for time separations of 11 ≤ t ≤ 13. This implies that

a particle with a mass of 3.04499 ± 0.0004 GeV exists and that the T−−1 does

indeed have physical states.

Table 3.1: Values for m0 of the T−+
1 Symmetry Point Group

Both ρ Operators Remaining 16 Operators All 18 Operators
First Good Timeslice 0.7473 ± 0.002 0.7480 ± 0.0046 0.743±0.002

' 4.235± 0.011 Gev ' 4.239± 0.026 Gev ' 4.211± 0.011 GeV
Largest Time Separation (all the same separation) (all the same separation) 0.748±0.002

(with 5≤ tmin /max ≤ 18) (with 8≤ tmin /max ≤18) ' 4.239± 0.011 GeV
Smallest χ2 0.7472 ± 0.0023 0.7491 ± 0.0042 0.742±0.003

' 4.234± 0.013 Gev ' 4.245± 0.024 GeV ' 4.205± 0.017 GeV

Here the average over all time slices is done over all those time slices for

which χ2 ' n where n is the number of operators.
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Chapter 4

Conclusions

4.1 Numerical Calculations of The Radial Wave-

function

It is possible to solve the partial differential Schrödinger equation for the radial

wavefunction R(r) using the method of separation of variables. Three equations

are obtained for the radial wavefunction R(r) and the angular wavefunctions

Φ(φ) and Θ(θ), though it is customary to combine the angular wavefunctions to

give Y ml
l (θ, φ).

Using C++ code to implement the Numerov algorithm it was seen that the

radial wavefunction equation could effectively be solved for a range of potential

functions, including the Cornell Potential and that of the gluon-flux tube. A
√
σ value of 400 MeV was used to reproduce the linear interaction term.

Graphs of the radial wavefunctions were then plotted for a range of energy

levels n and angular momentum quantum numbers l. It was found that the

linear term in the Cornell and flux-tube potentials caused the wavefunctions to

drop off quickly with increasing r. This is representative of the confinement

property of Quantum Chromodynamics.
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4.2 Lattice Charmonium Spectroscopy

The path integral formalism is an effective approach to study quantum field

theories such as Quantum Chromodynamics. It not only allows for the analytic

calculation of correlation functions due to the clear relationship it describes

between them and the Lagrangian functional, but also the possibility to put a

quantum field theory on a regular lattice in a well defined manor.

The analytic calculation of correlation functions is complicated to begin with.

Putting a quantum field theory on a lattice then, such as with lattice Quantum

Chromodynamics, introduces new complications. However it still possible to

compute such functions analytically using the Fourier transform representation

and the Green function method. For a lattice quantum field theory it is found

that the two-point correlation functions decay exponentially in Euclidean time

with the mass of the state.

This allows for the variational fitting of a curve to a data array and for the

extraction of a mass parameter by the chi-squared test method. For the data set

analysed under the T−−1 and T−+
1 symmetry point groups physical states with

masses of 3.04499± 0.0004 GeV and 4.211± 0.011 GeV respectively were found.

In the case of the operators of the T−+
1 group if was seen that the two ρ

operators give the majority of the contribution to the sate, as they gave rise

to the earliest variational fitting of the data. This corresponds to an exotic cc̄

state, as these second-derivative operators give contributions from the gluons.

4.3 Prospects of Lattice Quantum Chromo-

dynamics

The lattice allows for the non-perturbative study of Quantum Chromody-

namics. Though it introduces problems such as fermion doubling, and system-

atic errors due to both the lattice spacing and the finite volume of space-time

over which the simulations are performed, as well as statistical errors due to the

nature of Monte Carlo integration, these can be effectively overcome with novel

ideas such as those of the staggered fermion and the powerful machines of the

UKQCD collaboration to employ larger lattices and sampling sizes.
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Lattice Quantum Chromodynamics has produced better and better predic-

tions of the hadronic spectrum. ab inito calculation of the proton mass has

always been an acid test for Quantum Chromodynamics. Increasingly accurate

mass parameters for the quarks have been computed from the measurable prop-

erties of hadrons[88, 89]. As well as these, the strong coupling parameter αs

has been measured to increasing accuracy, with a current value with respect to

the MZ scale of αs(MZ) = 0.1183 ± 0.0008[90]. This is in excellent agreement

with the experimentally measured value of αs = 0.1186 ± 0.0011 calculated as

an average from high energy scattering experiments and decays[91]. As well as

this lattice Quantum Chromodynamics allows for the study of exotic mesonic

states and purely gluonic states as discussed extensively above (see 1.9).

Calculations show that the interaction energy increases linearly with quark

separation[92]. However the continuum limit of any lattice calculation must

be taken before conclusions may be made. Unfortunately asymptotic freedom

starts to take effect at smaller quark separations. Simulations suggest that as

the lattice spacing tends towards zero confinement holds, however it remains to

prove that confinement holds at zero lattice spacing.

It is believed that it is possible to have free quarks and antiquarks given

certain conditions of high energy and pressure in which quarks and gluons can

condense into a plasma state[93]. Here, the idea of individual hadrons is mean-

ingless, and the system consists of free quarks and gluons, the overall system

being in a colour singlet state. In a similar manner to that of the Mott insulator-

metal phase transition, the gluons act to screen the colour force between the high

density quarks, allowing the flow of colour charge. Lattice Quantum Chromo-

dynamics simulations suggest that the Deconfinement Transition should occur

at temperatures of about 1012K and densities about 10 times that of normal

nuclei[94]. Demonstrations of deconfinement, that is, the Quark-Gluon Plasma

are made possible using lattice Quantum Chromodynamics.

Quantum Chromodynamics is an extremely interesting theory, with a huge

number of research opportunities to offer. The chiral symmetry of Quantum

Chromodynamics[95], whose breaking can give rise to the small mass of the

pions[96, 97, 98], may be recovered above the Chiral Restoration Phase Transi-

tion. Modern simulations have helped to show that Quantum Chromodynamics
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predicts this transition[99, 100, 101]. Other active areas of research are Quark

Cooper Pairs, Colour Superconductivity and Colour-Flavour Locking [102, 103].

There is not yet any lattice non-perturbative simulations that suggest these

properties conclusively, but rather they remain to be explored. Another open

question is that of the coincidental cancellation of the CP violating term in the

Quantum Chromodynamics Lagrangian, known as the Strong CP Problem[104].

Even the fields of astrophysics and cosmology are united with Quantum

Chromodynamics in this front, with the prediction of the axion[105, 106] to

resolve the strong CP problem playing the rôle of a dark matter candidate, as

well as the possibility of Neutron Stars being a physical state of the quark-

gluon plasma[107]. These and many other avenues of exploration await lattice

Quantum Chromodynamics for a complete description.

4.4 Future Work

The general method of implementing C++ code to numerically solve the radial

schrödinger equation has herein been established. To accurately reproduce the

charmonium spectrum will require further fine tuning and optimisation of this

code. It is hoped that the spectrum can be reproduced to show the correct scaling

between the different energy levels upon fixing the 1S–1P splitting. More work

on this will have to be done if an accurate investigation is to be carried out.

From the results generated in this study and the methods used therein, the

investigation of a wide range of exotic charmonium mesonic states may follow

directly using the variational fitter code to preform chi-squared tests of the

multitude of data available. With the extraction of more mass parameters of

more states an increasing number of exotic states can potentially be identified

as physical states of the cc̄ system.

Furthermore, it remains to use the variational fitter code to preform chi-

squared testing analysis of the data generated using the CUDA LQCD Correlator

Calculator software recently developed by Ó Conbhúı[108]. This software is

capable of calculating the correlation functions of quantum fields in an extremely

computationally inexpensive fashion. Thus, more data may become available,

with the prospect of predicting new mesonic states.
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