# The Coincidence Method

 $\begin{array}{c} \textit{David-Alexander Robinson; Pádraig Ó Conbhuí;}^{*} \\ 08332461 \end{array}$ 

28th March 2011

# Contents

| 1        | Abs                | stract                               | <b>2</b> |  |  |  |
|----------|--------------------|--------------------------------------|----------|--|--|--|
| <b>2</b> | Intr               | oduction & Theory                    | <b>2</b> |  |  |  |
|          | 2.1                | Absolute Activity                    | 2        |  |  |  |
|          | 2.2                | The Resolving Time                   | 3        |  |  |  |
|          | 2.3                | The Range of $\beta$ -Particles      | 3        |  |  |  |
|          | 2.4                | Detector Efficiencies                | 3        |  |  |  |
| 3        | Exp                | perimental Method                    | 3        |  |  |  |
|          | 3.1                | Resolving Time                       | 3        |  |  |  |
|          | 3.2                | The Range of $\beta$ -Particles      | 3        |  |  |  |
|          | 3.3                | $\gamma$ - $\gamma$ Coincidence      | 3        |  |  |  |
|          | 3.4                | $\beta \gamma - \gamma$ Coincidence  | 3        |  |  |  |
|          | 3.5                | Detector Efficiencies                | 4        |  |  |  |
| 4        | Results & Analysis |                                      |          |  |  |  |
|          | 4.1                | Resolving Time                       | 4        |  |  |  |
|          | 4.2                | The Range of $\beta$ -Particles      | 4        |  |  |  |
|          | 4.3                | $\gamma$ - $\gamma$ Coincidence      | 4        |  |  |  |
|          | 4.4                | $\beta\gamma$ - $\gamma$ Coincidence | 4        |  |  |  |
|          | 4.5                | Detector Efficiencies                | 5        |  |  |  |
| <b>5</b> | Erre               | or Analysis                          | <b>5</b> |  |  |  |
| 6        | Conclusions        |                                      |          |  |  |  |

 $<sup>^{*}</sup>$ ©David-Alexander Robinson & Pádraig Ó Conbhuí

### 1 Abstract

In this experiment the absolute activity of a Cobalt-60 radioactive source was determined using the *Coincidence Counting Method*. It was found to be  $10,300\pm130$ Bq.

The resolving time for a Geiger-Müller counter was measured to be  $(4.4\pm0.3)\times10^{-6}$ s.

Furthermore, the laminar density of Aluminium needed to block  $\beta$ -particles was found to be  $1.20\pm0.10$  kg m<sup>-3</sup> which is of the same order of magnitude as the accepted value of 1.08 kg m<sup>-3</sup>.

Finally, the efficiency of the Geiger-Müller counters at detecting  $\gamma$ -rays and  $\beta$ -particles were calculated to be  $26\pm6\%$  and  $12\pm3\%$  for  $\gamma$ -rays and  $0.3\pm0.2\%$  for  $\beta$ -particles respectively.

# 2 Introduction & Theory

#### 2.1 Absolute Activity

The Absolute Activity of a radioactive source that emits two  $\gamma$ -rays can be measured using two detectors with efficiencies  $\varepsilon_{\gamma 1}$  and  $\varepsilon_{\gamma 2}$  respectively. The count rates will then be

$$N_{\gamma 1} = 2A\varepsilon_{\gamma 1}$$
 and  $N_{\gamma 2} = 2A\varepsilon_{\gamma 2}$  (1)

respectively, where A is the absolute activity.

Using a special coincidence counting circuit to measure the coincident count rate  $N_{\gamma 1,\gamma 2}$  where

$$N_{\gamma 1,\gamma 2} = 2A\varepsilon_{\gamma 1}\varepsilon_{\gamma 2}$$

the expression for the absolute activity is

$$A = \frac{N_{\gamma 1} N_{\gamma 2}}{2N_{\gamma 1, \gamma 2}} \tag{2}$$



Figure 1: The Coincidence Counting Circuit

A Co<sup>60</sup> source emits two  $\gamma$ -rays of energy 1.17MeV and 1.33MeV and a  $\beta$ particle of energy 0.314MeV per disintegration and so the count rate will be larger. Using an Aluminium sheet the  $\beta$ particles may be blocked from the detector. If an Aluminium sheet is not used,  $\beta$ -particles will also cause counts and the equation must be altered as now

$$N_{\beta\gamma1} = A(\varepsilon_{\beta1} + 2\varepsilon_{\gamma1})$$

 $\mathbf{SO}$ 

$$N_{\beta\gamma1,\gamma2} = A(2\varepsilon_{\beta1}\varepsilon_{\gamma2} + 2\varepsilon_{\gamma1}\varepsilon_{\gamma2})$$

giving

$$A = \frac{(N_{\beta\gamma1} - 0.5N_{\gamma1})N_{\gamma2}}{N_{\beta\gamma1,\gamma2}} \qquad (3)$$

where

$$\varepsilon_{\beta 1} = \frac{N_{\beta \gamma 1} - N_{\gamma 1}}{A} \tag{4}$$

since  $N_{\beta\gamma1} - N_{\gamma1}$  is the count rate for  $\beta$ -particles only.

#### 2.2 The Resolving Time

If two particles from two separate decay events arrive one at each of the two detectors respectively within the *Coincidence Resolving Time*  $\tau$  of one another then an *Accidental Count* will be recorded. The total number of accidental counts is given by

$$N_{\gamma 1,\gamma 2, \text{ acc}} = 2\tau N_{\gamma 1} N_{\gamma 2} \tag{5}$$

Using a single  $\gamma$ -ray source such as Cs the coincidence resolving time can be measured as any coincidence counts recorded will be accidental counts, and so

$$\tau = \frac{N_{\gamma 1, \gamma 2}^{(Cs)} \operatorname{acc}}{2N_{\gamma 1}^{(Cs)} N_{\gamma 2}^{(Cs)}}$$
(6)

The accidental coincidence count must be subtracted from all coincidence counts measured.

#### **2.3** The Range of $\beta$ -Particles

As  $\beta$ -particles pass through Aluminium they loose energy. For a certain thickness of an Aluminium sheet all  $\beta$ particles will loose their energy and will not reach the detector.

#### 2.4 Detector Efficiencies

Assuming that the Co<sup>60</sup> acts as a point source the Actual Efficiency  $\varepsilon_{act}$ is the Intrinsic Efficiency  $\varepsilon_{int}$  times the number of particles entering the detector. This can be calculated as the ratio of the solid angle  $\Omega$  subtended by the detector to the total solid angle of  $4\pi$ , and so the intrinsic efficiency is given by

$$\varepsilon_{\text{int}} = \frac{4\pi}{\Omega} \varepsilon_{\text{act}} = \frac{4\pi}{1} \left(\frac{\pi d^2}{r^2}\right)^{-1} \varepsilon_{\text{act}}$$
$$= \frac{4d^2}{r^2} \varepsilon_{\text{act}} \tag{7}$$

where r = 8.5mm is the radius of the detector and d is the distance from the Co<sup>60</sup> source to the detector.

# 3 Experimental Method

#### 3.1 Resolving Time

The single  $\gamma$  Cs source was used, and  $N_{\gamma 1}$  and  $N_{\gamma 2}$  were measured.

The circuit was set to "coin" and the accidental coincidence count  $N_{\gamma 1,\gamma 2}$  was then measured.

The resolving time was calculated using equation (6).

#### **3.2** The Range of $\beta$ -Particles

The  $Co^{60}$  source was used.

The count rate was measured with no Aluminium sheet. This was then repeated using Aluminium sheets of a range of thickness.

A graph of the thickness versus the count rate was plotted and the  $\beta$ -particle range was found.

#### **3.3** $\gamma$ - $\gamma$ Coincidence

Using the Co<sup>60</sup> source, and the appropriate Aluminium sheet as determined above,  $N_{\gamma 1}$  and  $N_{\gamma 2}$  were measured.

The absolute activity was then calculated using equations (2) and (5).

#### **3.4** $\beta\gamma$ - $\gamma$ Coincidence

The Aluminium sheet was removed, and the above experiment was repeated. The absolute activity was then found using equations (4) and (5).

### 3.5 Detector Efficiencies

The distance d from the Co<sup>60</sup> source to the detector was measured.

The intrinsic efficiency of detector 1 for both  $\gamma$ -rays and  $\beta$ -particles  $\varepsilon_{\gamma 1}$  and  $\varepsilon_{\beta 1}$  and that of detector 2 for  $\gamma$ -rays  $\varepsilon_{\gamma 2}$  were calculated using equations (1), (4) and (7).

# 4 Results & Analysis

### 4.1 Resolving Time

The following data was obtained for the Cs source

|                               | Count Rate, R       |
|-------------------------------|---------------------|
|                               | Bq                  |
| $N_{\gamma 1}^{Cs}$           | $26.9\pm0.4$        |
| $N_{\gamma 2}^{Cs}$           | $9.6 \pm 0.2$       |
| $N^{Cs'}_{\gamma 1,\gamma 2}$ | $0.0023 \pm 0.0002$ |

## 4.2 The Range of $\beta$ -Particles

The following graph was plotted using the data collected as the Aluminium sheet thickness x was varied



Figure 2: The Range of  $\beta$ -Particles versus Aluminium sheet Thickness

### **4.3** $\gamma$ - $\gamma$ Coincidence

The following data was obtained for the  $Co^{60}$  source using an Aluminium sheet of laminar density 5.2887 kg m<sup>-2</sup>

|                         | Count Rate, R   |
|-------------------------|-----------------|
|                         | Bq              |
| $N_{\gamma 1}$          | $19.8\pm0.1$    |
| $N_{\gamma 2}$          | $8.9\pm0.2$     |
| $N_{\gamma 1,\gamma 2}$ | $0.010\pm0.002$ |

# 4.4 $\beta\gamma$ - $\gamma$ Coincidence

The following data was then obtained for the  $Co^{60}$  source on removing the Aluminium sheet

|                            | Count Rate, R   |
|----------------------------|-----------------|
|                            | Bq              |
| $N_{\beta\gamma1}$         | $19.9\pm0.2$    |
| $N_{\gamma 2}$             | $8.9 \pm 0.2$   |
| $N_{\beta\gamma1,\gamma2}$ | $0.010\pm0.002$ |

## 4.5 Detector Efficiencies

The distance from the source to the detector d was measured to be  $70 \pm 1$ mm.

# 5 Error Analysis

The standard error in the time t was taken to be  $\pm 1$ s for all counts. The standard error in the thickness of the Aluminium sheets x was taken to be  $\pm 1\mu$ m. The following equations were then used to calculate the respective errors

 $\Delta \text{Count} = \sqrt{\text{Count}}$ 

$$\Delta \text{Rate} = \text{Rate} \times \sqrt{\left(\frac{\Delta \text{Count}}{\text{Count}}\right)^2 + \left(\frac{\Delta t}{t}\right)^2}$$
$$\Delta \tau = \tau \times \sqrt{\left(\frac{\Delta N_{\gamma 1,\gamma 2, \text{ acc}}^{(Cs)}}{N_{\gamma 1,\gamma 2, \text{ acc}}^{(Cs)}}\right)^2 + \left(\frac{\Delta N_{\gamma 1}^{(Cs)}}{N_{\gamma 1}^{(Cs)}}\right)^2 + \left(\frac{\Delta N_{\gamma 2}^{(Cs)}}{N_{\gamma 2}^{(Cs)}}\right)^2}$$
$$\Delta N_{\gamma 1,\gamma 2} \text{ acc} = A_{\gamma - \gamma} \text{ acc} \times \sqrt{\left(\frac{\Delta \tau}{\tau}\right)^2 + \left(\frac{\Delta N_{\gamma 1}}{N_{\gamma 1}}\right)^2 + \left(\frac{\Delta N_{\gamma 2}}{N_{\gamma 2}}\right)^2}$$

$$\Delta A_{\gamma-\gamma} = A_{\gamma-\gamma} \times \sqrt{\left(\frac{\Delta N_{\gamma1,\gamma2} - \Delta N_{\gamma1,\gamma2} \operatorname{acc}}{N_{\gamma1,\gamma2} - N_{\gamma1,\gamma2} \operatorname{acc}}\right)^2 + \left(\frac{\Delta N_{\gamma1}}{N_{\gamma1}}\right)^2 + \left(\frac{\Delta N_{\gamma2}}{N_{\gamma2}}\right)^2}$$
$$\Delta N_{\beta\gamma1,\gamma2} \operatorname{acc} = N_{\beta\gamma1,\gamma2} \operatorname{acc} \times \sqrt{\left(\frac{\Delta\tau}{\tau}\right)^2 + \left(\frac{\Delta N_{\beta\gamma1}}{N_{\beta\gamma1}}\right)^2 + \left(\frac{\Delta N_{\gamma2}}{N_{\gamma2}}\right)^2}$$

$$\begin{split} \Delta A_{\beta\gamma-\gamma} &= A_{\beta\gamma-\gamma} \times \sqrt{\left(\frac{\Delta N_{\beta\gamma1,\gamma2} - \Delta N_{\beta\gamma1,\gamma2} \ \operatorname{acc}}{N_{\beta\gamma1,\gamma2} - N_{\beta\gamma1,\gamma2} \ \operatorname{acc}}\right)^2 + \left(\frac{\Delta N_{\gamma1}}{N_{\gamma1}}\right)^2 + \left(\frac{\Delta N_{\gamma2}}{N_{\gamma2}}\right)^2} \\ \Delta \Omega &= \Omega \times \sqrt{2 \times \left(\frac{\Delta d}{d}\right)^2} \\ \Delta \varepsilon_j &= \varepsilon_j \times \sqrt{\left(\frac{\Delta \operatorname{Count}}{\operatorname{Count}}\right)^2 + \left(\frac{\Delta A_i}{A_i}\right)^2} \\ \Delta \varepsilon_{j, \ \operatorname{int}} &= \varepsilon_{j, \ \operatorname{int}} \times \sqrt{\left(\frac{\Delta \varepsilon_j}{\varepsilon_j}\right)^2 + \left(\frac{\Delta \Omega}{\Omega}\right)^2} \\ \text{where } \tau \ \text{is the resolving time, } A_i \ \text{are} \\ \text{respective absolute activities, } \Omega \ \text{is the} \end{split}$$

where  $\tau$  is the resolving time,  $A_i$  are the respective absolute activities,  $\Omega$  is the solid angle, d is the distance from the source to the detector and  $\varepsilon_j$  and  $\varepsilon_{j,\text{int}}$ are the respective actual and intrinsic ef-

# 6 Conclusions

The resolving time of the detector was calculated to be  $(4.4\pm0.3)\times10^{-6}$ s.

It was found that  $\beta$ -particles were stopped by a sheet of Aluminium of laminar density of  $1.20\pm0.10$  kg m<sup>-3</sup> corresponding to a drop in count rate. This compares well with the accepted value of 1.08 kg m<sup>-3</sup> as it is of the correct order of magnitude<sup>1</sup>.

The  $\gamma - \gamma$  and  $\beta \gamma - \gamma$  absolute activities

were measured to be  $10,400\pm2,300$ Bq and  $10,200\pm1,800$ Bq respectively. These independently measured values are within the range of experimental error of each other, and thus verify each other. The average value for the absolute activity was calculated to be  $10,300\pm130$ Bq.

Finally, the detector 1 intrinsic efficiencies for  $\gamma$ -rays and  $\beta$ -particles  $\varepsilon_{\gamma 1}$  and  $\varepsilon_{\beta 1}$  and the detector 2 intrinsic efficiency for  $\gamma$ -rays  $\varepsilon_{\gamma 2}$  were found to be 26±6%, 12±3% and 0.3±0.2% respectively.

 $<sup>^1\</sup>mathrm{Kaye}$  and Laby, text itTables of Physical and Chemical Constants, Longman Sc & Tech