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Introduction

This is a set of notes for MA224 Geometry, as taught by Professor David Simms in 2008/2009. It
mostly consists of the notes given in class, however in parts I’ve added comments and examples.
In other parts I’ve removed comments or examples, but usually only because they’re difficult to
typeset (and only when they aren’t strictly necessary; I’d like to think that everything required
for the exams is included, at least in the sections that these notes cover). Most of the examples
are taken from problem sets given during the course (these are labelled as such). This set of
notes was written mainly so that I didn’t have to use my messy handwritten notes when revising.
So at times I might assume things, or use abbreviations or notation that I use myself. There are
also going to be a lot of mistakes. It also should be noted that I basically learned everything
I currently know about LaTeX while typing these notes. So, in parts, the style is inconsistent
(and sometimes downright ugly!). Finally, the second half of the course is mostly missing. In
short, your mileage may vary.

ii



Chapter 1

Prerequisites

This chapter covers the basics that will be required for all of the later chapters. This only includes
topics that were covered in class however. So although a good knowledge of Linear Algebra is
definitely needed here, it is not covered. Everything needed was covered in 114 though.

We will start with the Einstein Convention. This is nothing more than a different type of
notation, one that is standard to physicists (and not so standard to mathematicians). This is
one of the bigger road-blocks to getting a feel for 224. Without spending time to understand
what the notation means, all you can really do is move symbols around a page. You won’t be
able to see what’s really going on. So it is worth spending some time getting familiar with it,
and how it relates to the notation you are familiar with from 114.

1.1 The Einstein Convention

At its heart, the Einstein Convention is nothing more than a different way of writing summations.
For example, the following is a common summation in Linear Algebra:

n∑
i=1

aiui

For instance, this could be the sum of components a1, a2, · · · , an of a vector with respect to the
basis u1, u2, · · · , un. Note that we use sub-scripts here - that is, the indices appear at the bottom
right of the a. We could instead use super-scripts - where the indices appear at the top right. For
example, ai instead of ai. The reason for this is that the former is easily confused with a to the
power of i. However, assume for the moment that we are using superscripts for the components.
So the previous equation becomes:

n∑
i=1

aiui

Now note how the upper i has a matching lower i. This is called a repeated index. The
Einstein convention is the following: wherever we see a repeated index, a summation is implied.
That is:

aiui = a0u0 + a1u1 + · · ·+ anun =
n∑
i=1

aiui

1
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We do this for two reasons. Firstly, we will at times want to talk about summations within
summations within summations. Writing three nested Σs is a pain, and so the Einstein Con-
vention allows us to be a lot more concise. Secondly, in some ways this convention is actually
more natural - it allows us to see certain things at a glance, which Σ would not (this sentence
is neccasserily vague; it will make more sense later on). Note that the Einstein Convention does
not allow us to specify what range we are summing between (whereas the Σ notation does). We
depend on context for this - in the above example, we want to sum over every basis vector, so
we sum from 1 to n.

Let’s say we want to express the product of two n× n matrices, A and B, using the Einstein
Convention. Usually we write:

cij =
n∑
k=1

aikbkj

Where aij , bij , cij are the components of A, B and AB respectively. To use the Einstein
Convention, we need to have upper indices as well as lower indices. So instead of aij we use aij .
Note that here the is denote the rows and the js denote the columns. The choice here is not
completely arbitrary, it fits in with a more general convention that will be elaborated on later.
Now, the summation becomes:

cij =
n∑
k=1

aikb
k
j = aikb

k
j

Example: (224 Excercises 1, Q.9) If αij stands for the matrix A, what does
αikα

k
l α

l
j stand for?

Answer: Well, notice that the first two terms match the expansion for
A2. That suggests the following approach: let βil = αikα

k
l , where βil are the

components of the matrix given by the first two terms, which we know is A2.
Then the whole expression is βilα

l
j which is the matrix product of A2 and A,

which is A3.

Where an index is not repeated, for example αi, we often take this to refer to α0, α1, · · · , αn.
For example, we might talk of the basis ui. Of course, ui is really just one vector. But clearly
we are referring to the basis u0, u1, · · · , un. There is an ambiguity here - when we say ui we
could be referring to the single vector ui or the entire basis u0, u1, · · · , un. We again depend on
context to determine which of the two interpretations we want. The same applies for more than
one non-repeated index. So αij could be taken to mean α0

0, α
0
1, · · · , α0

n, α
1
0, · · · , αnn. This justifies

talking about αij as the components of a matrix.
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Example: (224 Excercises 1, Q.10) If αij stands for the matrix A, what does
αikα

k
l α

l
i stand for?

Answer: This looks very similar to the last example. In fact, it is the
same expression, just the first and last indices are now equal. We know that
αikα

k
l α

l
j are the components of A3. Let B = A3. Then the components of B

are βij = αikα
k
l α

l
j . So αikα

k
l α

l
i = βii .

What is βii? Expanding, we get

βii =
n∑
i=1

βii = Tr(B) = Tr(A3)

An important symbol is the Kronecker Delta, defined as follows:

δij =
{

0 if i 6= j
1 if i = j

Note that the matrix whose components are δij is the identity matrix. So therefore, if we have a
matric A and its inverse B, who have components αij and βij respectively, then:

αikβ
k
j = δij = βikα

k
j

Above, the delta function has one upper index and one lower index. This doesn’t have to be the
case: δij and δij are all both equally acceptable. This can be useful where we want to sum, but
we don’t have a matching upper/lower index pair. The following example shows this.

Example: (224 Excercises 1, Q.8) What does δijαiβj stand for?

Answer: Any term where i 6= j will disappear, by the definition of
the Kronecker Delta. So we are just left with a sum over the values where
i = j. That is:

δijα
iβj =

n∑
i=1

n∑
j=1

δijα
iβj =

n∑
i=1

αiβi

One final thing: letting one index equal another is called contraction. So, for example, if
we have a matrix with components αij , then contracting we get αii, which we know is the trace.
So contracting the components of a matrix gives us the trace. If we have another matrix with
components βij , then we can take αikβ

l
j and contract the k with the l, giving αikβ

k
j - the matrix

product AB.

1.2 Some Linear Algebra

Throughout this section we will take M to be an n dimensional vector space, over a field K.
Remember that if we have a basis ui and a new basis wi, then each old basis vector uj is a

linear combination of wi:
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uj = pijwi

We call P the transition matrix (where P is the matrix with components pij). Let Q (with
components qij) be the inverse of P . Then:

PQ = I = QP

pikq
k
j = δij = qikp

k
j

uj = pijwi

wj = qijui

If x ∈ M has components/coordinates αi with respect to ui: x = αiui, then x = αjuj =
αjpijwi. So if we look at αi as a column vector X, then the new components are given by the
column vector PX. Therefore, when we’re changing the basis of a vector, the components of the
vector undergo multiplication by P .

So we can change the components of a vector from one basis to another. What about a linear
oeprator? Well, let’s say that T is a linear operator with components αij with respect to ui. Then:

Twj = Tqljul = qljTul

= qljα
k
l uk

= qljα
k
l p
i
kwi

= pikα
k
l q
l
jwi

= PAQwi

Therefore the matrix of T with respect to the new basis is PAQ (= PAP−1). Thus on change
of basis, the new matrix is gotten from the old αij by contracting the upper index (called the
contravariant index) with pij and contracting the lower index (called the covariant index) with
qij .

A scalar valued linear map f : M → K is called a linear form on M . We write 〈f, x〉 to
denote f(x). Call βj = 〈f, uj〉 the jth component of f with respect to the basis ui. If x ∈M has
components αi with respect to ui then:

〈f, x〉 =
〈
f, αiui

〉
= αi 〈f, ui〉 = αiβj

This is the matrix product of the row vector βi and the column vector αi.

If wi is a new basis.

wj = qijwi

Then f , in this new basis, has components:

〈f, wj〉 =
〈
f, qijui

〉
= qij 〈f, ui〉

So new components of f are gotten from old components by contraction with qij .
Recall that a bilinear form is a map B : M ×M → K, that is linear in both variables. So

B(αx, y) = αB(x, y) = B(x, αy) and B(x1 + x2, y1 + y2) = B(x1, y1) + B(x1, y2) + B(x2, y1) +
B(x2, y2). Now, say B is a bilinear form and:

B(ui, uj) = gij
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We say that B has components gij with respect to the basis ui. If x ∈ M has components αi

and y ∈M has components βi, then:

B(x, y) = B(αiui, βjuj) = αiβjB(ui, uj) = αiβjgij

So we contract the components of x with the first index of gij and we contract the components
of y with the second index. It would be nice to look at this in terms of matrix multiplication.
We have a slight problem in that the indices of g are both lower. If we instead look on gij as the
components of a matrix, then we get gij . In this case, we need to change αi to αi - so we look at
it as a row vector instead of a column vector. This gives:

αig
i
jβ
j = XtGY

But, I can hear you say, surely it wouldn’t matter if we took gji instead of gij . Well, in this case
we get:

βjg
j
iα

i = Y tGtX

This is the transpose of the previous equation. But as both are in fact scalars, and we know that
the transpose of a scalar is a scalar, they are actually the same!

Now let’s look at changing the basis of a bilinear form. Say wi is a new basis, then B has
components

B(wi, wj) = B(qki uk, q
l
juj) = qki q

l
jB(uk, ul) = qki q

l
jgkl = QtGQ

Note that, as above, we’ve taken gij to be the matrix gij , in order to get a matrix interpretation
for the change of components. For kicks, let’s do as we did above, and instead see what happens
if we take gji . Well, in this case we get:

qki q
j
l g
l
k = QGtQt

But this is not (in general) equal to the expression above, QtGQ! Is this a contradiction? While
it might appear so at first, what we’ve done in the second case is find the components gji , whereas
in the first case we found the components of gij . So the should be the transpose of the first (and
it is). So all is well.

What we’ve done in this section is go through several common operators in linear algebra,
express each in terms of the Einstein Convention, and then show how we can bring it from one
basis into another. It would be nice to have a table of the required conversion in each case. Oh
well.

1.3 Dual Spaces

The set of all linear forms on a vector space M (with dimension n over a field K, as always),
is called the dual space on M . We denote it as M∗. We can then define addition and scalar
multiplication for the dual space. If f, g ∈M∗, define:

〈f + g, x〉 = 〈f, x〉+ 〈g, x〉
〈αf, x〉 = α 〈f, x〉

So, in other words, 〈., .〉 is bilinear. We can also see that the above definitions make M∗ a vector
space.

Now, define ui : M → K by:
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〈
ui, αjuj

〉
= αi

we say that ui is the ith coordinate function on M with respect to the basis ui. Note that〈
ui, uj

〉
= δij . Also notice that this is a linear form (check this).

So we have that x =
〈
ui, x

〉
ui for x ∈ M . We now want to show that f = 〈f, ui〉ui for

f ∈M∗. This would tell us that ui is a basis of M∗.

Theorem:
Let ui be a basis for an n-dimensional vector space M . Let M∗ be the dual
space. Then the coordinate functions ui form a basis for M∗ and f = 〈f, ui〉ui,
for each f ∈M∗. Thus M∗ has the same dimension n, and f has components
〈f, ui〉 with respect to the basis ui.

Proof:
(i) Generate (span):
First we show that it generates M∗. Let f ∈M∗, and let 〈f, uj〉 = βj . Then

〈
Biu

i, uj
〉

= βi
〈
ui, uj

〉
= βiδ

i
j = βj = 〈f, uj〉

Therefore the linear forms βiu
i and f take the same values of each basis

vector, so they are equal. So f = 〈f, ui〉ui.

(ii) Linear Independence:
αiu

i = 0
⇒
〈
αiu

i, uj
〉

= 0
⇒ αi

〈
ui, uj

〉
= 0

⇒ αiδ
i
j = 0

⇒ αj = 0 �

So we know that M∗ is the dual of M . What is the dual of M∗? As it happens, it’s M .
In order to show this, we prove that M∗∗ = M .

Theorem:
M∗∗ and M are equal.
Proof:
Consider the map that takes M → M∗∗, defined by x → 〈., x〉. Here, 〈., x〉
denotes the linear form on M∗ whose value on f ∈M∗ is 〈f, x〉.

This map is linear and injective (check this; it is injective as it maps
only 0 to 0). We know that dimM = dimM∗, and similarly dimM∗ =
dimM∗∗. So the dimension of M is the same as that of M∗∗, and therefore
the map is bijective. So we have an isomorphism between M and M∗∗. Note
that we’re trying to prove that these two spaces are equal, which is stronger
than isomorphism. What we are looking for is in fact a natural isomorphism.

We have an isomorphism of M with M∗∗ which allows us to identify x
with 〈., x〉. Thus each f ∈ M∗ is a function x→ 〈f, x〉. And each x ∈ M is a
function f → 〈f, x〉. �

So ui is a basis of M and ui is the basis of dual M∗, with
〈
ui, uj

〉
= δij . We say that ui is
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a basis of M dual to ui. We also have:

x ∈M , x =
〈
ui, x

〉
ui

f ∈M∗, f = 〈f, ui〉ui

So we have a symmetry between M and M∗, called duality.

1.4 Scalar Products

Let M be a vector space over a field K, of finite dimension n. A scalar product is a bilinear form
(.|.), which maps M ×M → K, (x, y) 7→ (x|y), and is:

1. symmetric, (x|y) = (y|x)

2. non-degenerate, (x|y) = 0, ∀y iff x = 0

If ui is a basis for M , then (ui|uj) = gij are the components with respect to ui. By symmetry,
we have gij = gji, so the matrix G = (gij) is symmetric. So Gt = G.

If x = αiui, y = βiui, then (x|y) =
(
αiui|βjuj

)
= αiβjgij . Note that this is the same thing

we got for bilinear forms. Repeating what we did there, we take X = αi, Y = βj and get
(x|y) = XtGY .

The map M → M∗ defined by x → (x|.) is linear and injective (check this; it is injective as
non-degeneracy implies that only 0 is mapped to 0). Therefore the map is bijective. If x has
components αi with respect to ui, we denote by αi the components of (x|.) with respect to ui.
This map is called ‘lowering the index’, and its inverse is called ‘raising the index’.

αi are called the contravariant components of x. αi = (x|ui) are called the covariant compo-
nents of x. If x has contravariant components αi =

〈
ui, x

〉
then x has covariant components αi,

and:

αi = (x|ui) = (αjuj |ui) = αj(uj |ui) = αjgji = gijα
j

Therefore αi = gijαj , where gij is the inverse of gij . So contract with gij to lower an index, and
contract with gij to raise an index.

As an example, take normal Euclidean geometry, with the usual inner product (the dot
product). Note that the components of the dot product are δij . This is because standard dot
product is orthonormal. So therefore to lower an index we contract with δij :

αi = δijα
j = αi

So in normal Euclidean geometry, the covariant and contravariant components are the same with
respect to the usual inner product.



Chapter 2

Tensors

This chapter introduces the idea of a tensor, which builds on the idea of a linear form. Here,
instead of linear forms, we’ll be looking at multi linear forms - called tensors (of which linear and
bilinear forms are special cases). Imagine it as linear algebra on steroids. For this entire section,
we have an n dimensional vector space M over a field K, with dual space M∗.

2.1 Tensors

A tensor is a scalar valued function, so it maps something to an element of K. What it maps from
is a little more complicated, and a lot more arbitrary (in the sense that there is a lot of choice, not
in the sense that tensors were defined like this for shits and giggles): T : M1×M2×· · ·×Mk → K,
where eachMi is eitherM orM∗. If it is of this form, and if it is linear in each variable (seperately,
like a bilinear form) then it is a tensor. We say it is of degree k.

If (say), we have T : M ×M∗ ×M → K is a tensor and ui a basis for M . Then the array of
n3 scalars αjik = T (ui, uj , uk) are called the components of T with respect to the basis ui. Note
that, in general, a tensor of degree k will have nk components.

Now we’re going to repeat what we did for linear forms - try to see how components change
as we move from one basis to another. For simplicity, we only do this for the specific tensor
defined in the previous paragraph, but it’s pretty obvious from this what to do in the general
case. So, we know that αjik are the components with respect to the basis ui. Say we have a new
basis wi with transition matrix P (and with Q = P−1 as usual).

So wi = piju
j and wj = qijui. So, the new components of T are T (wi, wj , wk) = T (qri ur, p

j
su
s, qtkuk) =

qri p
j
sq
t
kα

s
rt. Therefore, to get new components, we contract each old lower/covariant index with

Q and each upper/contravariant index with P .
We say two tensors are of the same type when their domain is the same. So if T1 : M×M∗ →

K, T2 : M × M∗ → K and T3 : M∗ × M∗ → K, then T1 and T2 are of the same type,
but T3 is not. The set of all tensors of the same type form a vector space of degree nk

over K, where (S + T )(x1, · · · , xk) = S(x1, · · · , xk) + T (x1, · · · , xk) and (αT )(x1, · · · , xk) =
T (αx1, x2, · · · , xk) = T (x1, αx2, · · · , xk) = · · · = T (x1, x2, · · · , αxk). For example, the space of
tensors of type M ×M∗ ×M → K is mapped isomorphically onto the vector space Kn3

by
T → T (ui, uj , uk) (that is, a tensor is mapped to its components with respect to some chosen
basis).

Examples:

8



CHAPTER 2. TENSORS 9

1. f ∈M∗, f : M → K is a tensor with components αi = 〈f, ui〉.

2. x ∈M , 〈., x〉 : M∗ → K, f → 〈f, x〉 is a tensor with components αi =
〈
ui, x

〉
.

3. If T : M →M is a linear map, we identify it with T : M∗×M → K, (f, x)→ 〈f, Tx〉 with
components

〈
ui, Tuj

〉
= αij , which is the matrix of T with respect to ui.

4. If B : M ×M → K is a bilinear map, B is a tensor with components αij = B(ui, uj).

Let M1 ×M2 × · · · ×Mr × · · · ×Ms × · · · ×Mk → K be a tensor over M with rth index upper
(Mr = M∗) and sth index lower (Ms = M). Then we define a new tensor of degree k − 2,
denoted by S, by the following rule:

S : M1 ×M2 × · · · ×Mr−1 ×Mr+1 × · · · ×Ms−1 ×Ms+1 × · · · ×Mk → K
S(x1, · · · , xk−2) = T (x1, · · · , ui, · · · , ui, · · · , xk−2)

We call S the contraction of T with respect to the rth and sth indices.

Theorem:
Contraction is well-defined, independent of choice of basis.
Proof:
If wi is another basis, then:

T (x1, · · · , wi, · · · , wi, · · · , xk−2)
= T (x1, · · · , pikuk, · · · , qliul, · · · , xk−2)
= pikq

l
iT (x1, · · · , uk, · · · , ul, · · · , xk−2)

= δlkT (x1, · · · , uk, · · · , ul, · · · , xk−2)
= T (x1, · · · , uk, · · · , uk, · · · , xk−2) �

If, say, T has components αjkil , then the different possible contractions are:

(i) αkjik

(ii) αjkik

(iii) αikil

(iv) αjiik

Contracting (ii) and (iii) give αikik; contracting (i) and (iv) give αjiij . These are both scalars.
If S : M1 × · · · ×Mk → K and T : Mk+1 × · · · ×Ml → K are two tensors over K. We define

the tensor product S ⊗ T : M1 × · · · ×Ml → K given by:

S ⊗ T (x1, · · · , xl) = S(x1, · · · , xk)T (xk+1, · · · , xl)

For example, say we have S : M ×M∗ ×M → K and T : M∗ ×M → K. Then

S ⊗ T : M ×M∗ ×M ×M∗ ×M → K

where

S ⊗ T (x, f, y, g, z) = S(x, f, y)T (g, z)

If S has components αjik = S(ui, uj , uk), and T has components βij = T (ui, uj), then S ⊗ T has
components αjikβ

l
s

Tensors satisfy algebraic laws such as:
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• R⊗ (S + T ) = R⊗ S +R⊗ T

• (R+ S)⊗ T = R⊗ T + S ⊗ T

• (αS)⊗ T = α(S ⊗ T ) = S ⊗ (αT )

• (R⊗ S)⊗ T = R⊗ (S ⊗ T )

The first three of these show that tensor product is bilinear. The last shows that it is associa-
tive. In general, it is not commutative. For example, matrix multiplication is in general not
commutative.

Note that if f ∈ M∗, x ∈ M , g ∈ M∗ then f ⊗ x ⊗ g : M ×M∗ ×M → K is given by
〈f, y〉 〈h, x〉 〈g, z〉. Thus f ⊗ x ⊗ g ∈ M∗ ⊗M ⊗M∗ (where M∗ ⊗M ⊗M∗ is the space of all
tensors of type M ×M∗ ×M → K).

Theorem:
Let ui be a basis for M , then ui ⊗ uj ⊗ uk is a basis for M∗ ⊗M ⊗M∗. Also,
if T ∈M∗ ⊗M ⊗M∗ has components αjik = T (ui, uj , uk) then T = αjik. That
is, αjik are the components of T with respect to ui ⊗ uj ⊗ uk.
Proof:
(i) Let T have components αjik, then T = αjiku

i⊗uj ⊗uk because components
of RHS are
αjiku

i ⊗ uj ⊗ uk(ur, us, ut)
= αjik

〈
ui, ur

〉
〈us, uj〉

〈
uk, ut

〉
= αjikδ

i
rδ
s
j δ
k
t

= αsrt = T (ur, us, ut) as required.

(ii) We know that ui ⊗ uj ⊗ uk generate M∗ ⊗M ⊗M∗ by (i). Also:
αjiku

i ⊗ uj ⊗ uk = 0
⇒ the components of ui ⊗ uj ⊗ uk are 0
⇒ αsrt = 0 by (i)
⇒ they are linearly independent. �

2.2 Skew-Symmetric Tensors

A bijective map σ : {1, 2, · · · , r} → {1, 2, · · · , r} is called a permutation of degree r. We often
write σ(i) as σi. The group of all permutations of degree r is denoted by Sr.

Let T rM denote the space M∗⊗ · · · ⊗M∗ (r times). That is, the space of all tensors of type
M ×M · · · ×M → K (with M written r times). If T ∈ T rM , then with respect to the basis ui,
T has components T (ui1 , · · · , uir ) = αi1···ir . For each permutation σ ∈ Sr and each T ∈ T rM ,
we define σ.T ∈ T rM by:

(σ.T )(x1, · · · , xr) = T (xσ(1), · · · , xσ(r))

We call σ.T ‘T permuted by sigma’.
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Theorem:
The group Sr acts on T rM by linear transformations.

(i) σ.(αT + βS) = ασ.T + βσ.S

(ii) σ(τ.T ) = (στ).T

(iii) 1.T = T

Proof:

(i) We prove this in two parts. Firstly:

σ.(αT )(x1, · · · , xk)
= σ.T (αx1, x2, · · · , xk)
= T (xσ(1), · · · , αx1, · · · , xσ(k))
= αT (xσ(1), · · · , xσ(k))
= α(σ.T )

So σ.(αT ) = α(σ.T ). Also:

σ.(T + S)(x1, · · · , xk)
= (T + S)(xσ(1), · · · , xσ(k))
= T (xσ(1), · · · , xσ(k)) + S(xσ(1), · · · , xσ(k))
= (σ.T )(x1, · · · , xk) + (σ.S)(x1, · · · , xk)

So σ.(T + S) = σ.T + σ.S. These two facts immediately imply the result
we want.

(ii) σ.(τ.T )(x1, · · · , xk)
= (τ.T )(xσ(1), · · · , xσ(k))
= T (xτσ(1), · · · , Tτσ(k))
= (στ)T (x1, · · · , xk)

(iii) (1.T )(x1, · · · , xk)
= T (x1(1), · · · , x1(k))
= T (x1, · · · , xk) �

An important idea is the parity of a permutation. This is just the parity of the of the num-
ber of transpositions in the permutation. We also have the following symbol, called the sign of
a permutation:

εσ =
{

1 if σ is an even permutation
−1 if σ is an odd permutation

We can show (i) εστ = εσετ , (ii) ε1 = 1 and (iii) εσ
−1

= εσ.
We say that T ∈ T rM is skew-symmetric (or, more commonly, alternating or anti-symmetric)

if σ.T = εσT , ∀σ ∈ Sr. That is T (xσ(1), · · · , xσ(k)) = εσT (x1, · · · , xk). Which is to say, the
components satisfy:

αiσ(1)···iσ(k) = εσαi1···ik
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For example, if T ∈ T 3M is skew-symmetric, then T (x, y, z) = −T (y, x, z) = T (y, z, x) =
−T (z, y, x) = T (z, x, y) = −T (x, z, y). This implies T (x, x, z) = −T (x, x, z) ⇒ T (x, x, z) = 0.
Note that here we assume that k+k = 0 implies k = 0 in our field K. We also have the following
relation involving the components of T :

αijk = −αjik = αjki = −αkji = αkij = −αikj

It follows that if T ∈ T kM is skew-symmetric with components αi1···ik with respect to the basis
ui, then:

• αi1···ik = 0 if i1, · · · , ik are not all distinct.

• If we know αi1···ik for all increasing sequences then we know αi1···ik for all sequences.

• If S is skew-symmetric with components βi1···ik and αi1···ik = βi1···ik for all increasing
sequences then T = S.

Recall that the dimension of M is n. Let T ∈ T nM be skew-symmetric. Then with respect to
any basis ui, T is determined by the single component T (u1, · · · , un). Suppose T 6= 0. Then:

(i) x1, · · · , xn are linearly independent ⇒ x1, · · · , xn are a basis for M ⇒ T (x1, · · · , xn) 6= 0.

(ii) If they are linearly independent, then (say) x1 = α2x2 + · · ·+ αnxn.
⇒ T (x1, · · · , xn) = T (α2x2 + · · ·+ αnxn, x2, · · · , xn)
= α2T (x2, x2, · · · , xn) + · · ·+ αnT (xn, x2, · · · , xn) = 0

Thus x1, · · · , xn are linearly independent iff T (x1, · · · , xn) 6= 0.

Theorem:
Let T ∈ T nM , where M has dimension n and T is skew-symmetric. Let
S : M →M be a linear operator with matrix A with respect to some basis ui,
then:

T (Sx1, · · · , Sxn) = (detA)T (x1, · · · , xn)

(which confirms that detA is independent of choice of basis, so we can define
detS = detA).
Proof:
Both sides are skew-symmetric tensors as functions of x1, · · · , xn. So it is
completely determined by the values it takes on any basis, say ui. Then

T (Su1, · · · , Sun)
= T (αi11 ui1 , · · · , α

in
1 uin)

= αi11 α
i2
2 · · ·αinn T (ui1 , · · · , uin)

= εi1,i2,··· ,inα
i1
1 α

i2
2 · · ·αinn T (u1, · · · , un)

= (detA)T (u1, · · · , un) �

ForKn we have the usual basis e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · ), · · · , en = (0, 0, 0, · · · , 1).
We define the determinant tensor D of degree n on Kn to be the unique skew-symmetric tensor
such that D(e1, · · · , en) = 1. So D has components D(ei1 , ei2 , · · · , ein) = εi1,i2,··· ,in . If A is an
n× n matrix over K, then A : Kn → Kn. Aej is then the jth column of A. Denote this by aj .
Then

D(a1, · · · , an) = D(Ae1, · · · , Aen) = (detA)D(e1, · · · , en) = detA
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We have the following properties:

1. detAB = D(AB1, · · · , ABn) = (detA)D(B1, · · · , Bn) = (detA)(detB)

2. A is invertible ⇔ A : Kn → Kn is bijective ⇔ Ae1, · · · , Aen are linearly independent ⇔
detA 6= 0.

3. If x ∈ Kn has components αi with respect to ei, then:

D(e1, · · · , x, · · · , en) = D(e1, · · · , αses, · · · , en) = αiD(e1, · · · , en) = αi

(where x is inserted in the ith position).

2.3 Wedge Product

If S ∈ T sM and T ∈ T tM , we define the wedge product (or exterior product) of S and T by:

S ∧ T =
1
s!t!

∑
σ∈Ss+t

εσσ.(S ⊗ T )

For example, if S, T ∈M∗, with components αi and βi respectively. Then S∧T = S⊗T −T ⊗S,
and has components:

S ∧ T [ui, uj ] = S(ui)T (uj)− T (ui)S(uj) = αiβj − βiαj =∣∣∣∣ αi βi
αj βj

∣∣∣∣ .
We have the following properties:

1. S ∧ T is skew-symmetric

2. (R+ S) ∧ T = R ∧ T + S ∧ T

3. R ∧ (S + T ) = R ∧ S +R ∧ T

4. (αS) ∧ T = α(S ∧ T ) = S ∧ (αT )

5. (R ∧ S) ∧ T = R ∧ (S ∧ T )

6. R1 ∧R2 ∧ · · · ∧Rk =
(r1 + · · ·+ rk)!

r1! · · · rk!
A(R1 ⊗ · · · ⊗Rk)

7. S ∧ T = (−1)stT ∧ S (super-symmetry)

If s is odd, we call S odd, and if s is even then we call S even. Super-symmetry also implies the
following properties:

1. S ∧ T = T ∧ S if either S or T has even degree.

2. S ∧ T = −T ∧ S if both S or T has odd degree.

3. S ∧ S = 0 if S has odd degree.

4. T1 ∧ · · · ∧ S ∧ · · · ∧ S ∧ · · · ∧ Tk = 0 if S has odd degree.
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5. If x1, · · · , xr ∈M and i1, · · · , ir are selected from {1, 2, · · · , r} then:

xi1 ∧ · · · ∧ xir = εi1···irx1 ∧ · · · ∧ xr
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Example: (224 Excercises 4, Q.1) Let A be an n × n matrix with columns
c1, · · · , cn. Show that

c1 ∧ · · · ∧ cn = detAe1 ∧ · · · ∧ en

Let x = (x1, · · · , xn). Show that the equation Ax = b is equivalent to:

x1c1 + · · ·+ xncn = b

Solve the equation for the scalar xn by taking the wedge product with c1 ∧
· · · ∧ cn−1 (Cramer’s Rule).
Answer:

(i) We have

c1 ∧ · · · ∧ cn = (ci11 ei1 ∧ · · · ∧ cinn ein)
= (ci11 · · · cinn )(ei1 ∧ · · · ∧ ein)
= εi1···in(ci11 · · · cinn )e1 ∧ · · · ∧ en
= detAe1 ∧ · · · ∧ en

(ii)

(c1c2 · · · cn)


x1

x2

...
xn

 = c1x
1 + c2x

2 · · · cnxn

So therefore Ax = b⇔ c1x
1 + c2x

2 · · · cnxn = b.

(iii) We get:

x1c1 ∧ · · · ∧ cn−1 ∧ c1 + · · ·+ xnc1 ∧ · · · ∧ cn = c1 ∧ · · · ∧ cn−1 ∧ b
0 + 0 + · · ·+ detAxne1 ∧ · · · ∧ en = detAne1 ∧ · · · ∧ en

xn =
detAn
detA

Where An is the matrix with columns c1, · · · , cn−1, b.

Example: (224 Excercises 4, Q.2) Let x1, · · · , xr ∈M . Show that x1, · · · , xr
are linearly independent iff

x1 ∧ · · · ∧ xr 6= 0

Answer: Note that the solution given here in previous versions of these notes is
incorrect. To prove it properly, note that if they are not linearly independent
we can easily reduce it to the wedge product of two equal terms, which is
0. To prove the converse, prove the contrapositive (if they are not linearly
independent, the wedge product is not 0). This can be shown by extending
the vectors to a basis, and then using the lemma that appears at the end of
this section. This example really should be moved, but it stays here for now.

Denote byM (r) the space of all skew-symmetric tensors of degree r, and typeM×M · · ·×M → K,
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over a finite dimensional vector space M (where dimM = n). ui is a basis of M , and ui is a
basis of M∗. Will show:

ui ∧ uj : M ×M → K, i < j, basis for M (2)

ui ∧ uj ∧ uk : M ×M ×M → K, i < j < k, basis for M (3)

...

For example, dimM = 4:

M (1) = M∗, basis is u1, u2, u3, u4

M (2), basis is u1 ∧ u2, u1 ∧ u3, u1 ∧ u4, u2 ∧ u3, u2 ∧ u4, u3 ∧ u4

M (3), basis is u1 ∧ u2 ∧ u3, u1 ∧ u2 ∧ u4, u1 ∧ u3 ∧ u4, u2 ∧ u3 ∧ u4

M (4), basis is u1 ∧ u2 ∧ u3 ∧ u4

The linear operator A : T rM → T rM defined by:

AT =
1
r!

∑
σ∈Sr

εσσ.T

This is called the skew-symmetriser (and it converts each tensor to a skew-symmetric one). Note
that in many books this is called the alternator. As such, AT is sometimes written Alt(T ).

Theorem:
AT is skew-symmetric.
Proof:
Let τ be a permutation of degree r.

τ(AT )

= τ.[
1
r!

∑
σ∈Sr

εσσ.T ]

= ετ [
1
r!

∑
σ∈Sr

εσετ (τσ).T ]

= ετ [
1
r!

∑
σ′∈Sr

εσ
′
σ′.T ] (where σ′ = τσ)

= ετ .(AT ) �

For example, let T ∈ T 3M with components αijk. Then

AT (x, y, z) =
1
6

[T (x, y, z)− T (x, z, y) + T (y, z, x)− T (y, x, z) + T (z, x, y)− T (z, y, x)]

AT has components

βijk = 1
6 [αijk − αikj + αjki − αjik + αkij − αkji]
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Theorem:
Let S ∈ T sM , T ∈ T tM , then

(i) A[(AS)⊗ T ] = A[S ⊗ T ] = A[S ⊗ (AT )]

(ii) A(S ⊗ T ) = (−1)stA(T ⊗ S)

Proof:

(i) Note that if τ ∈ Ss then

[(τ.S)⊗ T ](x1, · · · , xs, xs+1, · · · , xs+t)
= (τ.S)(x1, · · · , xs)T (xs+1, · · · , xs+t)
= S(xτ(1), · · · , τ(s))T (xs+1, · · · , xs+t)
= S(xτ ′(1), · · · , xτ ′(s))T (xτ ′(s+1), · · · , xτ ′(s+t))
Where

τ ′ =
(

1 2 · · · s s+ 1 · · · s+ t
τ(1) τ(2) · · · τ(s) s+ 1 · · · s+ t

)
∈ Ss+t

= [τ ′.(S ⊗ T )](x1, · · · , xs+t)
∴ (τ.S)⊗ T = τ ′.(S ⊗ T )

Now, A[(AS)⊗ T ] =
1

(s+ t)!

∑
σ∈Ss+t

εσσ.[(AS)⊗ T ]

=
1

(s+ t)!

∑
σ∈Ss+t

εσ[(
1
s!

∑
τ∈Ss

ετ .τS)⊗ T ]

=
1
s!

∑
τ∈Ss

1
(s+ t)!

∑
σ∈Ss+t

εστ
′
(στ ′).(S ⊗ T )

=
1
s!

∑
τ∈Ss

A[S ⊗ T ]

= (
1
s!

)(s!)A[S ⊗ T ]

= A[S ⊗ T ]

(ii) Let τ ∈ Ss+t such that:

τ =
(

1 · · · s s+ 1 · · · s+ t
t+ 1 · · · t+ s 1 · · · t

)
∈ Ss+t

Note that εt = (−1)st. Then [τ(S ⊗ T )](x1, · · · , xs+t)

= [S ⊗ T ](xt+1, · · · , xt+s, x1, · · · , xt)
= S(xt+1, · · · , xt+s)T (x1, · · · , xt)
= T (x1, · · · , xt)S(xt+1, · · · , xt+s)
= [T ⊗ S](x1, · · · , xt+s)
∴ τ.(S ⊗ T ) = T ⊗ S
∴ A(S ⊗ T ) =

1
(s+ t)!

∑
σ∈Ss+t

εστ (στ)(S ⊗ T )

= ετ
1

(s+ t)!

∑
σ∈Ss+t

εσσ.(T ⊗ S)

(−1)stA(T ⊗ S) �
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Recall S ∧ T =
1
s!t!

∑
σ∈τ

ετσ.(S ⊗ T ). Therefore S ∧ T =
(s+ t)!
s!t!

A(S ⊗ T ). Also recall that

M (r) is the space of all skew-symmetric tensors of degree r. What is the dimension of M (r)?
We’ll build up to this now, first by proving the following lemma. Thanks Amy for the proof :)

Lemma:
If 1 ≤ i1 < · · · < ir ≤ n and 1 ≤ j1 < · · · < jr ≤ n, then:

ui1 ∧ ui2 ∧ · · · ∧ uir [uj1 , uj2 , · · · , ujr ] =
{

1 if i1 = j1, · · · , ir = jr
0 otherwise

Proof:

ui1 ∧ · · · ∧ uir [uj1 , · · · , ujr ] = n!A(ui1 ⊗ · · · ⊗ uir )[uj1 , · · · , ujr ]

=
∑
σ∈Sr

εσui1 ∧ · · · ∧ uir [uj1 , · · · , ujr ]

=
∑
σ∈Sr

εσδi1jσ(1)
· · · δirjσ(r)

This clearly is 1 if i1 = j1, · · · , ir = jr, and 0 otherwise. �

So, for example, take M to have dimension 4, then we have:

1. u1 ∧ u2[u1, u2] = 1

2. u1 ∧ u2[u2, u1] = −1 (this follows from skew-symmetry)

3. u1 ∧ u2[u1, u1] = 0

4. u1 ∧ u2[u2, u3] = 0

Anyway, this lemma will be helpful in proving the following theorem, which answers our question
about the dimension of M (r).
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Theorem:
Let dimM = n, ui be a basis. Then:

(i) M (r) = 0 if r > n.

(ii) The tensor
∑

i1<···<ir

αi1···iru
i1 ∧ · · · ∧ uir has components αi1···ir for

i1 < · · · < ir.

(iii) {ui1 ∧ · · · ∧ uir}, i1 < · · · < ir is a basis for M (r). So dimM (r) =
n!

r!(n− r)!
.

Proof:

(i) Let T ∈M (r) have components αi1···ir with respect to ui. If r > n, then
i1, · · · , ir are not all distinct. Therefore αi1···ir = 0, thus T = 0.

(ii) The tensor ∑
i1<···<ir

αi1···iru
i1 ∧ · · · ∧ uir (2.1)

has components j1, j2, · · · , jr for j1 < · · · < jr. Now∑
i1<···<ir

αi1···iru
i1 ∧ · · · ∧ uir [uj1 , · · · , ujr ] = αj1 · · · jr by lemma.

(iii) Let T ∈ M (r) have components αi1···ir for i1 < · · · < ir, then T is
as in equation (2.1) above. {ui1 ∧ · · · ∧ uir}, i1 < · · · < ir are linearly
independent, since if T = 0 then the components of T are all 0, that is
αi1···ir . �

So, we have:

(i) If T ∈M (r)T =
∑

i1<···<ir

αi1···iru
i1 ∧ · · · ∧ uir .

(ii) If T ∈M(r)T =
∑

i1<···<ir

αi1···irui1 ∧ · · · ∧ uir .

So we have M (1) = M∗, M(1) = M , M (0) = K = M(0).



Chapter 3

Pull-Back, Push-Forward and
Orientation

Categories are an abstraction of other mathematical structures (such as groups and vector
spaces). We use categeries in relation to the “Pull-Back” and “Push-Forward” functors. During
lectures, pictures were often used (what were referred to as ‘commutative diagrams’). I haven’t
copied them here yet. Instead, have a look at the Mathsoc wiki.

3.1 Categories

A category is a collection of objects, and a collection of morphisms. Each morphism maps
from one unique object to another. For each object, we have a morphism from that object to
itself, called the identity (and denoted 1M , if M is the object in question). Finally, we have an
associative binary operation called composition over the morphisms, such that is f maps from
A to B, and g maps from B to C, then gf maps from A to C.
Examples:

1. Category set where objects are sets and morphisms are maps of sets.

2. Category K-Vect where objects are vector spaces over a field K, and morphisms are linear
maps.

3. Category group whose objects are groups and morphisms are homomorphisms.

A functor F from a category C to a category D assigns:

1. To each object M in C, an object F (M) in D.

2. To each morphism T : M → N in C, assigns a morphism

T∗ : F (M)→ F (N) where F is covariant.
T ∗ : F (M)← F (N) where F is contravariant.

Such that

(a) If T : L → M , S : M → N then (ST )∗ = S∗T∗ if F is covariant, and (ST )∗ = T ∗S∗

where F is contravariant.

20
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(b) (1M )∗ = 1F (M) (if F is covariant), or (1M )∗ = 1F (M) (if F is contravariant).

Theorem:
For each linear operator T : M → N of K-vector spaces M , N define the
pull-back (or transpose) T ∗ : M∗ ← N∗ of T by:

〈T ∗f, x〉 = 〈f, Tx〉

Then this is a contravariant functor from category K-Vect to category K-Vect.
Proof:

(i) T ∗ is a linear operator.

(ii) Let T : L → M , S : M → N and (ST ) : L → N . Say we have f ∈ N∗.
Then (ST )∗f ∈ L. We have:

〈(ST )∗f, x〉 = 〈f, (ST )x, 〉
= 〈S∗f, Tx〉
= 〈T ∗S∗f, x〉 ∀x ∈ L

Therefore (ST )∗f = T ∗S∗f for all f ∈ N∗. Hence (ST )∗ = T ∗S∗ as
required.

(iii) 〈(1M )∗f, x, 〉 = 〈f, 1Mx〉 = 〈f, x〉, ∀x ∈M
Therefore (1M )∗f = f for all f ∈M∗ as required. �

3.2 Properties of Pull-Back and Push-Forward

Note that in the finite dimensional case, the category of K-vector spaces and linear maps, we
have a duality between M and M∗: M is the dual of M∗ and M∗ is the dual of M . So let’s say
that T : M → N has pull-back T ∗ : M∗ ← N∗. Then T ∗ has pull-back T∗ : M → N . We have
that:

〈f, T∗x〉 = 〈T ∗f, x〉 = 〈f, Tx〉, ∀f ∈ N∗

Therefore T∗x = Tx, ∀x ∈ M , and so T∗ = T . What about the more general case T :
M ⊗ · · · ⊗M → N ⊗ · · · ⊗N? The following theorem answers these questions.
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Theorem:
To each linear operator T : M → N on finite dimensional K-vector spaces
M,N define the push-forward

T∗ : M ⊗M ⊗ · · · ⊗M → N ⊗N ⊗ · · ·N (each term appearing r times)

And the pull-back

T ∗ : M∗ ⊗M∗ ⊗ · · · ⊗M∗ ← N∗ ⊗N∗ · · ·N∗

By:

(T∗S)(f1, · · · , fr) = S(T ∗f1, · · · , T ∗fr) for f1, · · · , fr ∈ N∗

And

(T ∗S)(x1, · · · , xr) = S(T∗x1, T∗x2, · · · , T∗xr) for x1, · · · , xr ∈M

Then the push-forward is a covariant functor and the pull-back is a contravari-
ant functor from finite dimensional K-Vect to finite dimensional K-Vect.
Proof:
Let T : L → M , U : M → N , (UT ) : L → N , be a commutative diagram.
Then:

T ∗ : L∗ ⊗ · · · ⊗ L∗ ← M∗ ⊗ · · · ⊗M∗

U∗ : N∗ ⊗ · · · ⊗N∗ → M∗ ⊗ · · · ⊗M∗

(UT )∗ : N∗ ⊗ · · · ⊗N∗ → L∗ ⊗ · · · ⊗ L∗

Then:

[(UT )∗S](x1, · · · , xr), xi ∈ L, S ∈ N∗ ⊗ · · · ⊗N∗
= S[UTx1, · · · , UTxr]
= (U∗S)[Tx1, · · · , Txr]
= [T ∗(U∗S)](x1, · · · , xr) ∀xi ∈ L,∀S

So (UT )∗ = T ∗U∗ as required. Therefore pull-back is a contravariant functor.
Similarly for push-forward. �
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Theorem:

(i) T ∗(R⊗ S) = (T ∗R)⊗ (T ∗S), that is pull-back preserves tensor product.

(ii) S is skew-symmetric ⇒ T ∗S is skew-symmetric.

(iii) T ∗(R ∧ S) = (T ∗R) ∧ (T ∗S)

And similarly for push-forward.
Proof:
Let T : M → N , R ∈ N∗⊗· · ·⊗N∗ (r times) and S ∈ N∗⊗· · ·⊗N∗ (s times).
Then:

(i)

[T ∗(R⊗ S)](x1, · · · , xr+s) = (R⊗ S)[Tx1, · · · , Txr+s]
= R(Tx1, · · · , Txr)S(Txr+1, · · · , Txr+s)
= (T ∗R)(x1, · · · , xr)(T ∗S)(xr+1, · · · , xr+s)
= (T ∗R⊗ T ∗S)[x1, · · · , xr+s] ∀xi

Therefore T ∗(R⊗ S) = (T ∗R)⊗ (T ∗S), as required.

(ii) Let σ ∈ Ss, then:

σ.(T ∗S)(x1, · · · , xs) = σS(Tx1, · · · , Txs)
= S(Txσ(1), · · · , Txσ(s))sgn(σ)
= sgn(σ)[T ∗S](xσ(1), · · · , xσ(s))

Therefore T ∗S is skew-symmetric as required.

(iii)

T ∗[R ∧ S] = T ∗[
1
r!s!

∑
σ∈Sr+s

εσσ.(R⊗ S)]

=
1
r!s!

∑
σ∈Sr+s

εσσ.(T ∗R⊗ T ∗S)] (by(ii))

= (T ∗R) ∧ (T ∗S) �

Let dimM = n. Then:

T : M → M

T∗ : M(n) → M(n)

T ∗ : M (n) ← M (n)

dimM(r) =
n!

r!(n− r)!

So dimM(n) = 1 = dimM (n). On the 1-dimensional spacve M(n), push-forward is just multipli-
cation by a scalar. The same is true for pull-back on M (n). If S ∈M (n), then:
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(T ∗S)(x1, · · · , xs) = S(Tx1, · · · , Txs) = det(T )S(x1, · · · , xs)

As S is skew-symmetric. Therefore pull-back of S is just detT times S. Hence T ∗ on M (n) is
multiplication by the determinant of T .

Also, if ui is a basis of M and T has matrix αij with respect to ui, then:

T∗(u1 ∧ u2 ∧ · · · ∧ un) = (T∗u1) ∧ (T∗u2) ∧ · · · ∧ (T∗un)
= (αi11 ui1) ∧ (αi22 ui2) ∧ · · · ∧ (αinn uin)
= (detT )u1 ∧ u2 ∧ · · · ∧ un

Therefore T∗ on M(n) is also multiplication by detT .

3.3 Orientation

In the previous section, we saw that for a basis ui and some vectors x1, x2, · · · , xn we have:

x1 ∧ x2 ∧ · · · ∧ xn = (detX)u1 ∧ u2 ∧ · · · ∧ un

What if we have two bases: u1, · · · , un and v1, · · · , vn? Well, in that case we have:

u1 ∧ u2 ∧ · · · ∧ un = (detU)v1 ∧ v2 ∧ · · · ∧ vn

We know that detU 6= 0 (as it is a basis). We say that u1, · · · , un and v1, · · · , vn have the same
orientation if detU > 0, and the opposite orientation otherwise. It is easily seen that ’same
orientation’ is an equivalence relation on the set of all bases in M . The two equivalence classes
are naturally the positive and negative bases. For Rn, the usual basis is designated positive in
what is called the ’usual’ orientation of Rn.
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Theorem:
Let M be a real oriented vector space of finite dimension n with a (symmetric
and non-degenerate) scalar product. We call u1, u2, · · · , un a standard basis
for M if it is positively oriented and

(ui|uj) =


±1 0 · · · 0
0 ±1 · · · 0
...

...
. . .

...
0 0 · · · ±1


(Recall that by Sylvester’s Theorem the number of plus/minus signs is
uniquely determined by (.|.)).

The n-form

vol = u1 ∧ u2 ∧ · · · ∧ un

is independent of choice of standard basis u1, u2, · · · , un and is called the vol-
ume form on M . Thus, for any standard basis, we have:

vol(u1, · · · , un) = 1

If w1, · · · , wn is any positively oriented basis then

vol =
√
|det(wi|wj)|w1 ∧ · · · ∧ wn

Thus

vol(w1, · · · , wn) =
√
|det(wi|wj)|

Proof:
Fix a standard basis u1, · · · , un. Let w1, · · · , wn be any positively oriented
basis. Then we have:

ui = pijw
j

Where P is the transition matrix from wi to ui.
∴ u1 ∧ · · · ∧ un = (detP)w1 ∧ · · · ∧ wn, detP > 0
Now,

P t

 ±1 · · · 0
...

. . .
...

0 · · · ±1

P = G

Where G = (gij) is a matrix with gij = (wi|wj).

∴ ±(detP)2 = detG

∴ detP =
√
|detG|

∴ vol = u1 ∧ · · · ∧ un

=
√
|detG|w1 ∧ · · · ∧ wn

And if w1, · · · , wn is a standard basis, the above works out to be exactly

w1 ∧ · · · ∧ wn �
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Note that the above theorem gives us that given any positively oriented basis wi, vol has com-
ponents

√
|det(wi|wj)|εi1,··· ,in .

3.4 Hodge Star Operator

Let M be a scalar, oriented vector space of dimension n with a (symmetric, non-degenerate)
scalar product (.|.). Then, for each 0 ≤ r ≤ n define the Hodge Star Operator:

∗ : M (r) →M (n−r)

By

(∗w)(v1, · · · , vn−r) =
1
r!
w(ui1 , · · · , uir )vol(ui1 , · · · , uir , uir+1 , · · · , uin)(uir+1 |v1) · · · (uin |vn−r)

Theorem:
Let u1, · · · , un be a standard basis for M . That is

(ui|ui) = si = ±1

Then

∗u1 ∧ · · · ∧ ur = sr+1 · · · sn.ur+1 ∧ · · · ∧ un

Proof:
Let w = u1 ∧ · · · ∧ ur.
Then w(u1, · · · , ur) = 1 and all other components of w are 0 except for r!
permutations of u1, · · · , ur.
∴ ∗w(v1, · · · , vn−r) =

1
r!
r!vol(u1, · · · , ur, uir+1 , · · · , uin)(uir+1 |v1) · · · (uin |vn−r)

∴ ∗w(ur+1, · · · , un) = vol(u1, · · · , ur, ur+1, · · · , un)(ur+1|ur+1) · · · (un|un)
∴ ∗w(ur+1, · · · , un) = sr+1 · · · sn
And all the other components of ∗w are 0 except the permutations of
ur+1, · · · , un as required. �

For example, if M is a 3 dimensional oriented Euclidean space, and u1, u2, u3 are positively
oriented orthonormal, that is (ui|ui) = 1, si = 1. Then:
∗u1 = u2 ∧ u3

∗u2 = u3 ∧ u1 (as u2, u3, u1 are positive)

x = α1u1 + α2u2 + α3u3

y = β1u1 + β2u2 + β3u3

x ∧ y = det
(
α2 α3

β2 β3

)
u2 ∧ u3 + det

(
α3 α1

β3 β1

)
u3 ∧ u1 + det

(
α1 α2

β1 β2

)
u1 ∧ u2

∗x ∧ y = det
(
α2 α3

β2 β3

)
u1 + det

(
α3 α1

β3 β1

)
u2 + det

(
α1 α2

β1 β2

)
u3 = x× y



Chapter 4

Continuity and Differentiability

It should be noted that Chris Blair has some excellent notes on this section on his webpage.
Basically everything given by Professor Simms verbatim, LATEXed up. Anyway, this chapter
firstly covers continuity (and the basic topology needed to express things), in order to describe
differentiability, which makes up the final part of this chapter.

4.1 Continuity

The main goal of this chapter is to describe differentiation of linear operators. It helps a bit
to look at what we’re trying to do, before launching into continuity. We can already find the
derivative of a function f : R→ R. That is:

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

We can’t do the same here because we can’t divide by h (as h is a vector). There are also some
other complications. In the R → R case, when we say h → 0 we obviously mean that h gets
arbitrarily small. But what does this mean in a vector space? We’re going to need to have some
notion of the distance between vectors, and of ‘small’ regions around vectors.

So, we define a norm (or length function) on the vector space M . A norm is a function
||.|| : M → R such that:

(i) ||x+ y|| ≤ ||x||+ ||y|| (the triangle inequality)

(ii) ||αx|| = |α|.||x||, where α ∈ R

(iii) ||x|| ≥ 0

(iv) ||x|| = 0 if and only if x = 0

Now that we have a way of measuring distance, we can describe small regions. If V is a
subset of a normed space M , then we call V open if for all a ∈ V , there exists δ > 0 such that
||x− a|| < δ ⇒ x ∈ V . In fact, no matter what norm we choose, the open sets will be the same
(in a finite dimensional real vector space). This is assumed, no proof was given in class.

Another way to look at open sets is the following... Talk about balls here. Then continuity.
Include Theorems 35-38 (see Chris Blair’s notes) and proofs...

27
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4.2 Differentiability

Now we’re ready to define the derivative. There is one big difference between the derivative of a
linear operator that maps between vector spaces, and the usual derivative for functions that map
from R → R. It arises from the fact that unlike in R, we can usually move in several different
directions in vector space. So we can’t describe the rate of change of a function in a vector space
with a single scalar. The rate of change is going to depend on the direction we’re moving in.
So instead we define the derivative at a point to be another linear operator. So if f : M → N ,
where M and N are vector spaces, then for each a ∈ M , f ′(a) is a linear operator that maps
from M → N , and [f ′(a)](h) measures the rate of change of f in the direction of the vector h.
Note that [f ′(a)](h) is more often written as f ′(a)h. Its important to remember that this doesn’t
mean multiplication of f ′(a) and h.

Anyway, on with the definition: let M,N be real or complex vector spaces, with V,W open
subsets of M and N respectively. Let f : V → W . We say that f is differentiable at a ∈ M if
there exists a linear operator

f ′(a) : M → N

called the derivative of f at a, such that

f(a+ h) = f(a) + f ′(a)h+ φ(h)

where f ′(a)h is a linear approximation to the change in f when a changes by h, and φ(h) is a
remainder term such that

||φ(h)||
||h||

→ 0 as ||h|| → 0

The following theorem gives us that the derivative is unique.
Theorem:
Let M,N be vector spaces, with V,W open sets in M and N respectively. Let
f : V → W be differentiable at a ∈ V . Then the derivative f ′(a) is uniquely
determined by the formula

f ′(a)h = lim
t→0

f(a+ th)− f(a)
t

=
d

dt
f(a+ th)

∣∣∣
t=0

Proof:

f(a+ th) = f(a) + f ′(a)th+ φ(th) (by definition)

⇒
∣∣∣∣∣∣f(a+ th)− f(a)

t
− f ′(a)h

∣∣∣∣∣∣ =
φ(th)
|t|

=
φ(th)
||th||

||h||

The RHS tends to 0 as t→ 0, so the LHS must also tend to 0, which gives us

f ′(a)h = lim
t→0

f(a+ th)− f(a)
t

�

Let f : V → R, where V is an open subset of Rn.

(x1, x2, · · · , xn) 7→ f(x1, x2, · · · , xn)
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f is called a real valued function of n independent real variables. We also define:

∂f

∂xj
(a) =

∂f

∂xj
(a1, a2, · · · , an)

= lim
t→0

f(a1, · · · , aj + t, · · · , an)
t

= lim
t→0

f(a+ tej)
t

=
d

dt
f(a+ tej)

∣∣∣
t=0

This is the directional derivative in the direction of the basis vector ej , and is called the partial
derivative of f at a with respect to the jth coordinate function xj . We use the partial derivative
to describe the derivative of a linear operator.

Theorem:
Let V ⊂ Rn be open, and let f : V → Rm, where f(x) =
(f1(x), f2(x), · · · , fm(x)). Then the derivative of f

f ′(a) : Rn → Rm

is the m× n matrix

f ′(a) =
(∂f i(a)

∂xj

)
, i = 1, · · · ,m, j = 1, · · · , n

Proof:
Consider the jth column of f ′(a). We have:

f ′(a)ej =
d

dt
f(a+ tej)

∣∣∣
t=0

=
∂f(a)
∂xj

= (
∂f1(a)
∂xj

, · · · , ∂f
m(a)
∂xj

)

This is true for each column, hence result. �

Next, we look at the chain rule for functions on finite dimensional real or complex vector spaces.
But before we can get into this, we need to define a norm that acts on operators. Let T : M → N ,
a linear operator between finite dimensional normed vector spaces. Then we define

||T || = sup
||u||=1

||Tu||

This is called (slightly prematurely) the operator norm of T . The following theorem shows us
that it is indeed a norm.
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Theorem:
The operator norm satisfies:

(i) ||S + T || ≤ ||S||+ ||T ||

(ii) ||αT || = |α|||T ||

(iii) ||Tx|| ≤ ||T ||||x||

(iv) ||ST || ≤ ||S||||T ||

(v) ||T || ≥ 0

(vi) ||T || = 0⇔ T = 0

Proof:
These all should be straightforward enough (at least, Professor Simms thought
so, enough to leave out most of the proofs). For example:

(iii) ||Tx|| = ||x||
∣∣∣∣∣∣T x

||x||

∣∣∣∣∣∣ ≤ ||x||||T ||, as
x

||x||
is a unit vector.

(iv)

||ST || = sup
||u||=1

||STu|| ≤ sup
||u||=1

||S||.||Tu|| by(iii)

≤ sup
||u||=1

||S||.||T ||.||u||

= ||S||.||T ||
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Theorem: (Chain Rule)
Let U, V,W be open subsets of finite dimensional vector spaces. Let g : U → V ,
f : V →W , f ◦ g : U →W . If g is differentiable at a and f is differentiable at
g(a), then f ◦ g is differentiable at a and

(f ◦ g)′ = f ′(g(a))g′(a)

Proof:
We know that f and g are differentiable, so we have that:

f(a+ h) = f(a) + f ′(a)h+ ψ(h)
g(a+ h) = g(a) + g′(a)h+ φ(h)

Where as ||h|| → 0 we have
||ψ(h)||
||h||

→ 0 and
||φ(h)||
||h||

→ 0. Then:

f(g(a+ h)) = f(g(a) + g′(a)h+ φ(h))
= f(g(a) + (g′(a)h+ φ(h)))
= f(g(a)) + f ′(g(a))(g′(a)h+ φ(h))) + ψ(g′(a)h+ φ(h)))
= f(g(a)) + f ′(g(a))g′(a)h+ f ′(g(a))φ(h) + ψ(g′(a)h+ φ(h)))

Now, take y = g′(a) + φ(h). So the above becomes:

f(g(a+ h)) = f(g(a)) + f ′(g(a))g′(a)h+ f ′(g(a))φ(h) + ψ(y)

So f ′(g(a))g′(a)h is the linear term, and f ′(g(a))φ(h) + ψ(y) is the remainder
term. We just need to show that the remainder term goes to 0 when we divide
by ||h|| and let ||h|| → 0.∣∣∣∣∣∣f ′(g(a))φ(h) + ψ(y)||

||h||
=
||f ′(g(a))φ(h) + ||y||.ψ(y)

||y||

∣∣∣∣∣∣
||h||

≤
∣∣∣∣∣∣f ′(g(a))

∣∣∣∣∣∣ ||φ(h)||
||h||

+
||y||
||h||

.
∣∣∣∣∣∣ψ(y)
||y||

∣∣∣∣∣∣
Now, we have:

y = g′(a)h+ φ(h)
⇒ ||y|| ≤ ||g′(a)||.||h||+ ||φ(h)||

⇒ ||y||
||h||

≤ ||g′(a)||+ ||φ(h)||
||h||

∴ ||h|| → 0⇒ ||y|| → 0

So:

||h|| → 0⇒
∣∣∣∣∣∣f ′(g(a))

∣∣∣∣∣∣ ||φ(h)||
||h||

→ 0

And also:

||h|| → 0⇒ ||y|| → 0⇒ ||y||
||h||

.
∣∣∣∣∣∣ψ(y)
||y||

∣∣∣∣∣∣→ 0

Therefore ||h|| → 0⇒ ||f
′(g(a))φ(h) + ψ(y)||

||h||
→ 0. Thus

(f ◦ g)′(a) = f ′(g(a))g′(a) �
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Now we start to relate continuity and differentiability. We start with the following theorems.

Theorem:
Let M,N be finite dimensional real vector spaces, with V an open subset of
M . Then f is differentiable at a ⇒ f is continuous at a.
Proof:
Let f be differentiable at a. Then:

f(a+ h) = f(a) + f ′(a)h+ φ(h)

Where
||φ(h)||
||h||

→ 0 as ||h|| → 0. Note that

||f(a+ h)− f(a)|| ≤ ||f ′(a)h||.||h||+ ||φ(h)||

The RHS goes to 0 as h→ 0, so the LHS must too. Thus we have continuity.
�
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Theorem:
Let V be an open subset of Rn, and f : V → R. That is, f is a real valued
function of n independent variables. Then f has a continuous derivative ⇔
∂f

∂xj
exists and is continuous for each j.

Proof:
We only prove this for the n = 2 case. The other cases are similar.

• If f has a continuous derivative, then

f ′ = (
∂f

∂x
,
∂f

∂y
)

Therefore each component exists and is continuous, hence
∂f

∂x
,
∂f

∂y
exist

and are continuous.

• Conversely, assume that
∂f

∂x
,
∂f

∂y
are continuous. Then

f(a+ h) = f(a) +
[
∂f

∂x
,
∂f

∂y

]
h+

(
f(a+ h)− f(a)−

[
∂f
∂x ,

∂f
∂y

]
h
)

Let φ(h) = f(a+h)−f(a)−
[
∂f
∂x ,

∂f
∂y

]
h. Then we just need to show that

||φ(h)||
||h||

→ 0 as ||h|| → 0. Now:

φ(h) = f(a+ h)− f(a)−
[
∂f

∂x
,
∂f

∂y

]
h

= f(a+ h)− f(a)− ∂f

∂x
h1 − ∂f

∂y
h2

= f(a+ h)− f(a+ h2e2)− ∂f

∂x
h1 + f(a+ h2e2)− f(a)− ∂f

∂y
h2

=
∂f

∂x
(m1)h1 − ∂f

∂x
(a)h1 +

∂f

∂y
(m2)h2 − ∂f

∂y
(a)h2(byMVT)

Thus

||φ(h)||
||h||

≤ ||h1||
||h||

.
∣∣∣∣∣∣∂f
∂x

(m1)− ∂f

∂x
(a)
∣∣∣∣∣∣+

||h2||
||h||

.
∣∣∣∣∣∣∂f
∂y

(m2)− ∂f

∂y
(a)
∣∣∣∣∣∣

The RHS tends to 0 as ||h|| → 0, so f ′ exists, and is
[
∂f

∂x
,
∂f

∂y

]
. �

Let M,N be finite dimensional real vector spaces, and f : V → N , where V is an open subset of
M . We say that f is differentiable if it is differentiable at each point, and we have the function
f ′, where x 7→ f ′(x). We call f ′ the derivative of f . If also f ′ is continuous on V , we say that f
is C1. If f ′ is also differentiable, we call its derivative f ′′. If f ′′ is continuous, we say that f is
C2. In general, if the rth derivative exists and is continuous, we say that f is Cr. If f is Cr for
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all r, we say that f is C∞ (or equivalently we say that f is smooth).

Now, let’s say that we have V an open subset of Rn, with f : V → R. Then f is C1 ⇔ ∂f

∂xj

exists and is continuous for each j. Similarly, f is C2 ⇔ ∂2f

∂xi∂xj
exist and are continuous. Does

it matter what order we take derivatives? That is to say, is
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
?

Theorem:
If V is an open set in Rn and f : V → R, where f is C2. Then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
∀i, j

Proof:
We just consider the case where n = 2. So we want to show that

∂

∂x
.
∂f

∂y
=

∂

∂y
.
∂f

∂x

Consider any point (a, b) in V . As V is open, we can find a rectangle [a, a+h]× [b, b+k]
contained in V . A picture would be helpful here, but haven’t gotten round to that yet.
Check the mathsoc wiki and the old 211/221 notes. Anyway, so we have a rectangle in
V , whose lower left corner is (a, b) and whose upper right corner is (a+ h, b+ k), where
h 6= 0, k 6= 0.
Define g(x) = f(x, b + k) − f(x, b). This is just the value of f along the top of the
rectangle, minus the value along the bottom. Then:

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b) = g(a+ h)− g(a)
= g′(c).h byMVT

= h[
∂f

∂x
(c, b+ k)− ∂f

∂x
(c, b)]

= hk
∂f

∂y∂x
(c, d) byMVT

Similarly, if we define h(y) = f(a+ h, y)− f(a, y) and repeat the above steps, we get

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b) = kh ∂f
∂x∂y (c′, d′)

Thus

hk
∂f

∂y∂x
(c, d) = kh

∂f

∂x∂y
(c′, d′)

∂f

∂y∂x
(c, d) =

∂f

∂x∂y
(c′, d′)

We now let k → 0, h→ 0. Thus c→ a, c′ → a, d→ b, d′ → b. As the partial derivatives
are continuous, the value at the limit is equal to the limit of the value. Thus we get

∂2f

∂x∂y
(a, b) =

∂2f

∂y∂x
(a, b), ∀(a, b) ∈ V �
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Let M,V be vector spaces with V,W open subsets respectively. Let f : M → V . We say
that f is a Cr-diffeomorphism if f is bijective, and if both f and f−1 are Cr. The Inverse Func-
tion Theorem tells us that under certain conditions we can find local inverses for f . But before
we can prove the Inverse Function Theorem, we need the Mean Value Theorem for vector valued
functions. This allows us to control the distance between f(x) and f(y), if we know something
about f ′ in the interval between x and y.

Theorem: (Mean Value Theorem for vector valued functions)
Let f be C1. Let x, y ∈ V , such that

tx+ (1− t)y ∈ V , ∀0 ≤ t ≤ 1

And:

||f ′(tx+ (1− t)y)|| ≤ k

Then:

||f(x)− f(y)|| ≤ k||x− y||

Proof:

f(x)− f(y) =
∫ 1

0

( d
dt
f(tx+ (1− t)y)

)
dt

=
∫ 1

0

f ′
(
tx+ (1− t)y

)
.(x− y)dt

Therefore

||f(x)− f(y)|| ≤
∫ 1

0

k.||x− y||dt = k||x− y|| �

Now we can look at the inverse function theorem. This is probably the hardest proof on the
course. I’ve divided it up into 5 parts, but this is more or less arbitrary (I found this particular
division easiest to understand, but in class he used 4 parts, and Chris Blair’s notes uses 3).
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Theorem: (Inverse Function Theorem)
Let M,N be finite dimensional real or complex vector spaces, with V open in
M . Let f : V → N be a Cr function, and a ∈ V such that

f ′(a) : M → N

is invertible, then there exists an open neighbourhood W of a such that

f : W → f(W )

is a Cr diffeomorphism onto open f(W ) in N .
Proof:

(i) Initial reduction:
Let T be the inverse of f ′(a). Let

F (x) = Tf(x+ a)− Tf(a)

Then we have the following:

F (0) = 0
F ′(x) = Tf ′(x+ a)
F ′(0) = Tf ′(a) = 1M

We will show that F maps an open neighbourhood U of 0 onto an open
neighbourhood F (U) by a Cr diffeomorphism. It will follow that f maps
U + a onto f(U + a) by a Cr diffeomorphism.

(ii) Define domain B on which F is a homeomorphism:
Choose a closed ball B, centre 0, with r > 0 such that for all x ∈ B:

||1M − F ′(x)|| ≤ 1
2

detF ′(x) 6= 0

(We can do this because F’ is continuous). Then

||x− y|| − ||F (x)− F (y)|| ≤ ||(x− F (x))− (y − F (y))||
= ||(1M − F )x− (1M − F )y||

≤ 1
2
||x− y|| (MVT)

Therefore ||F (x)− F (y)|| ≥ 1
2 ||x− y|| ⇒ F is injective. So

F : B → F (B)

is bijective. Also, F (x)→ F (y)⇒ x→ y so F−1 is continuous. So

F : B → F (B)

is a homeomorphism.

(iii) Show that 1
2B ⊆ F (B):

Let a ∈ 1
2B. Put g(x) = x− F (x) + a. Then

∴ ||g′(x)|| = ||1− F ′(x)|| ≤ 1
2∀x ∈ B
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So

||g(x)− g(y)|| ≤ 1
2 ||x− y|| by the MVT

Therefore g is a contraction mapping. Also (noting that g(0) = a):

||g(x)|| = ||g(x)− g(0) + a||
≤ ||g(x)− g(0)||+ ||a||

≤ 1
2
||x||+ ||a||

≤ 1
2
r +

1
2
r = r

So g maps B into itself and is contracting.

Choose x0 ∈ B. Put xn+1 = g(xn). (xn) has a limit point b.
Now, by continuity

g(b) = g(limxn) = lim g(xn) = limxn+1 = b

So b is a fixed point. Therefore g(b) = b − F (b) + a = b. So F (b) = a,
thus a ∈ F (b). So now

1. F : B → F (B) is a homeomorphism.

2. 1
2B ⊆ F (B)

3. ||F (x)− F (y)|| ≤ 1
2 ||x− y||

(iv) Show F is a C1 diffeomorphism:
Let B0 be the interior of B and let

U = B0 ∩ F−1( 1
2B

0)

Then U is open and F : U → F (U) is a homeomorphism of open U onto
open F (U). F is a Cr function, so we just need to show G : F (U)→ U
is Cr, where G = F−1.

Let G(x) = y, G(x+ h) = y + l. Then

F (y + l) = F (y) + Sl + φ(l)

Where S = F ′(y) and
||φ(l)||
||l||

→ 0 as ||l|| → 0.
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Also

||F (x)− F (y)|| ≥ 1
2
||x− y||

||F (y + l)− F (y)|| ≥ 1
2
||l||

||x+ h− x|| ≥ 1
2
||l||

||h|| ≥ 1
2
||l||

So

F (y + l) = F (y) + Sl + φ(l)
⇒ x+ h = x+ Sl + φ(l)
⇒ Sl = −φ(l) + h
⇒ l = S−1h− S−1φ(l)

So G(x+ h) = y + l = G(x) + S−1h− S−1φ(l). Now:

||S−1φ(l)||
||h||

≤ ||S−1||. ||φ(l)||
||l||

.
||l||
||h||

We also have that as ||h|| → 0, ||l|| → 0 so
||φ(l)||
||l||

→ 0. And we know

that
||l||
||h||

≤ 2. So therefore:

||h|| → 0⇒ ||S
−1φ(l)||
||h||

→ 0

So G is differentiable with derivative S−1.

(v) Show that G is Cr:
We now know that G is differentiable at x and

G′(x) = S−1 = [F ′(y)]−1 = [F ′(G(x))]−1

So if G is Cs for some 0 ≤ s < r then G′ is the composition of the Cs

functions G, F ′ and the inverse function, and so G′ is Cs, which means
that G is Cs+1, for all 0 ≤ s < r. Therefore G is Cr. �



Chapter 5

Manifolds

This (unfinished) chapter defines what a manifold is, and how we can determine if something
is a manifold (by the Implicit Function Theorem). Then we look at how to find derivatives of
functions defined on manifolds.

5.1 What is a Manifold?

The title of this section is misleading in that it suggests I’m going to explain exacly what
a manifold is, which I’m not. Instead, I’m going to waffle about what a manifold is loosely
speaking, then give the formal definition.

A mainfold is a ‘surface’ which is ‘locally’ ‘like’ Rn (where n is constant for every point on
the manifold, which we refer to as the rank of the mainfold). That is, if we take any point
in the manifold, there is an open set around this which is homeomorphic to Rn. Remember
that, roughly speaking, two spaces are homeomorphic if we can stretch or bend one to get the
other. So in R2, an open square is homeomorphic to an open circle. Also, any open set in Rn is
homeomorphic to Rn. A few examples:

1. Take the surface of a sphere in R3. Then take a small open ball around any point on the
sphere. The points in this open ball that are on the sphere form a bent disc. If we unbend
this, it will just be an open disc from R2 - which we know is homeomorphic to R2. So we
can see that the surface of a sphere in R3 is a manifold of rank 2.

2. Take Rn. Then any open set in Rn is homeomorphic to Rn. So Rn is a manifold of rank n.

Anyway, before we can define a manifold, we need to define a coordinate system. Let X be a
topological space and V be open in X. A sequence (y1, · · · , yn) of real valued functions on V is
called an n-dimensional coordinate system on X with domain V if

y : V → y(V ) ⊂ Rn

x 7→ y(x) = (y1(x), · · · , yn(x))

We also need to know that on a manifold the different coordinate systems agree on the points
in the intersections of their domains. Let y = (y1, · · · , yn) with domain V and z = (z1, · · · , zn)
with domain W be n-dimensional coordinate systems. We say that y and z are Cr-compatible if

yi = F i(z1, · · · , zn)
zi = Gi(y1, · · · , yn)

39
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where F i is Cr on z(V ∩W ) and Gi is Cr on y(V ∩W ).
Finally we can define a manifold. A topological space X is a Cr-manifold if a collection of

mutually Cr-compatible coordinate systems is given whose domain cover X. Each coordinate
system is a called a chart, and the collection is called an atlas.

We need some way to check if some equation describes a manifold. This is provided by the
Implicit Function Theorem.
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Theorem: (Implicit Function Theorem)
Let f = (f1, · · · , f l) be Cr real-valued functions on an open set V of Rn, and
let

X = {x ∈ V |f(x) = 0}

Let a ∈ X such that rankf ′(a) = l. Then there exists an open neighbourhood
U of a in X such that xl+1, · · · , xn form an n−l dimensional coordinate system
with domain U and x1, · · · , xl are Cr functions of xl+1, · · · , xn on U .
Proof:
Assume the first l columns are linearly independent (we can do this without
loss of generality). Put

F = (f1, · · · , f l, xl+1, · · · , xn).

Then:

F ′ =



∂f1

∂x1 . . . ∂f1

∂xl
∂f1

∂xl+1 . . . ∂f1

∂xn

...
. . .

...
...

. . .
...

∂f l

∂x1 . . . ∂f l

∂xl
∂f l

∂xl+1 . . . ∂f l

∂xn

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1


Clearly:

detF ′ = det


∂f1

∂x1 . . . ∂f1

∂xl

...
. . .

...
∂f l

∂x1 . . . ∂f l

∂xl


We assumed that the first l columns were linearly independent at a, so
detF ′ 6= 0 at a.

By the inverse function theorem, F maps an open neighbourhood W of
a in Rn onto an open set F (W ) by a Cr-diffeomorphism. Let G = F−1.

Put U = X ∩ W , an open neighbourhood of a in X. In X (and hence
in U), the first l coordinates are 0. Therefore xl+1, · · · , xn map U homeomor-
phically onto open F (U) in Rn−l. So xl+1, · · · , xn form an (n− l) dimensional
coordinate system on X, domain U .

Also if G = (G1, · · · , Gn), then on U :

x1 = G1(0, 0, · · · , 0, xl+1, · · · , xn)
...
xl = Gl(0, 0, · · · , 0, xl+1, · · · , xn)

Each of these are Cr functions, as required. �



CHAPTER 5. MANIFOLDS 42

An immediate corollary to this is that if

X = {x ∈ V | rank of f ′(x) = l and f(x) = 0}

then X is a Cr (n− l) dimmensional manifold.

5.2 Tangent Vectors

A real vector function f is called smooth at a if its domain U is an open neighbourhood of a and
there exists coordinates yi at a such that

f = F (y1, · · · , yn)

on an open neighbourhood of a with F being C∞. We then write:

∂F

∂yj
(a) =

∂F

∂xj
(y1(a), · · · , yn(a)) =

d

dt
F (y1(a), · · · , yj(a) + t, · · · , yn(a))|t=0


