1S11 (Timoney) Tutorial sheet 3

[October 9-12, 2012]
Name: Solutions

1. For $\mathbf{v}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $\mathbf{w}=4 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$, find the projection $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$ along \mathbf{w} of \mathbf{v}.

Solution: Solution:

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) & =\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w} \\
\mathbf{v} \cdot \mathbf{w} & =(3)(4)+(1)(-5)+2(1)=12-5+2=9 \\
\|\mathbf{w}\|^{2} & =4^{2}+(-5)^{2}+1^{2}=16+25+1=42 \\
\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) & =\frac{9}{42} \mathbf{w} \\
& =\frac{36}{42} \mathbf{i}-\frac{45}{42} \mathbf{j}+\frac{9}{42} \mathbf{k} \\
& =\frac{6}{7} \mathbf{i}-\frac{15}{14} \mathbf{j}+\frac{3}{14} \mathbf{k}
\end{aligned}
$$

2. Find the equation of the plane in space passing through the point $(1,2,3)$ perpendicular (normal) to the vector $6 \mathbf{i}-5 \mathbf{j}+4 \mathbf{k}$.
Solution: We know the equation has the form $6 x-5 y+4 z=$ const (the coefficients of x, y and z are the compnents of the normal vector). Since $(1,2,3)$ is one point on the plane, we must have

$$
6-10+12=\text { const }
$$

and so the equation is $6 x-5 y+4 z=8$.
3. Find the equation of the plane in space passing through the points $(0,2,3),(1,0,0)$ and $(2,0,0)$.
Solution: We want an equation of the form $n_{1} x+n_{2} y+n_{3} z=c$ (where n_{1}, n_{2} and n_{3} are not all zero) and the information we have is that there are 3 values of (x, y, z) that satisfy the equations.
Plugging each point in in turn says that we need n_{1}, n_{2}, n_{3} and c to satisfy the three equations

$$
\begin{aligned}
2 n_{2}+3 n_{3} & =c \\
& =c \\
n_{1} & =c
\end{aligned}
$$

The last two equations look contradictory as we get both $n_{1}=c$ and $n_{1}=c / 2$ from them - which must mean that $c=c / 2$, so $c=0$ and then $n_{1}=0$ also. So the equation
$n_{1} x+n_{2} y+n_{3} z=c$ must be of the form $n_{2} y+n_{3} z=0$ and we need $2 n_{2}+3 n_{3}=0$. We still have two unknowns n_{2} and n_{3} and one equation for them. So we need

$$
n_{2}=-\frac{3}{2} n_{3}
$$

and the equation of the plane has to be

$$
-\frac{3}{2} n_{3} y+n_{3} z=0
$$

Any nonzero value of n_{3} will be valid, or we can divide across by it and get

$$
-\frac{3}{2} y+z=0
$$

as the equation of the plane.
(You might prefer to multiply both sides by -2 to get a tidier equation $3 y-2 z=0$ for the same plane.)
4. Find the equation of the plane through $(1,2,5)$ perpendicular to the line with parametric equations

$$
\begin{aligned}
& x=3+2 t \\
& y=3-2 t \\
& z=1+7 t
\end{aligned}
$$

Solution: A vector parallel to the line is $2 \mathbf{i}-2 \mathbf{j}+7 \mathbf{k}$ and this is then normal to the plane. So the plane has equation $2 x-2 y+7 z=d$ for some constant d.

As $(x, y, z)=(1,2,5)$ is on the plane we have to have $2-4+35=d$ or $d=33$ and the equation is $2 x-2 y+7 z=33$.

Richard M. Timoney

