
1S11 (Timoney) Tutorial sheet 2
[October 2 – 5, 2012]

Name: Solutions

1. (a) Show (on the graph) the point P with coordinates (2, 4, 1) and the point Q with
coordinates (1, 2, 5).

(b) Sketch the position vectors of the two points (P for P and Q for Q).
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(c) Calculate the distance from P to Q.
Solution: By the distance formula√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 =
√

(1− 2)2 + (2− 4)2 + (5− 1)2

=
√
1 + 4 + 16 =

√
21

is the distance from P to Q.

(d) Calculate ‖Q−P‖.
Solution: As the vector Q − P can be represented by an arrow from the point P to
the point Q, the length of the vector must be exactly the distance from P to Q. We’ve
just calculated that as

√
21.



2. For v = −3i+ 7j+ 2k and w = 6i− 3j+ 7k, calculate

(a) the cosine of the angle between v and w

Solution: We know v.w = ‖v‖‖w‖ cos θ.
We need to calculate

v.w = (−3)(6) + (7)(−3) + (2)(7)

= −18− 21 + 14 = −25
‖v‖ =

√
(−3)2 + 72 + 22 =

√
62

‖w‖ =
√

62 + (−3)2 + 72 =
√
94

Then we have
−25 =

√
62
√
94 cos θ

from which we get

cos θ =
−25√
62
√
94

(b) the unit vector in the same direction as w.
Solution: The unit vector is w divided by its length ‖w‖, that is

1

‖w‖
w =

1√
94

w =
6√
94

i− 3√
94

j+
7√
94

k

(c) Is v perpendicular to 3i− 7j+ 2k? (Why?)
Solution:

v.(3i− 7j+ 2k) = (−3)(3) + 7(−7) + 2(2) = −54 6= 0

and so not perpendicular.

3. Find the equation of the points (x, y, z) that are on the sphere of radius 2 and centre
(3,−4, 5). Find an answer without square roots. [Hint: the points on the sphere are those
with distance from the center exactly equal to the radius.]

Solution: If we write the description of the points on the sphere as a formula, we get

distance((x, y, z), (3,−4, 5)) = 2√
(x− 3)2 + (y + 4)2 + (z − 5)2 = 2

(x− 3)2 + (y + 4)2 + (z − 5)2 = 4

We have squared both sides to eliminate the square root.
Note: Normally we could introduce extra solutions to an equation by squaring both sides.
The equation t = 4 has just the one solution, but t2 = 16 has two solutions: t = 4 and
t = −4. As the distance between points is never negative, we can find the distance if we
know its square. So we do not introduce any extra solutions by squaring both sides.
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