1S11 (Timoney) Tutorial sheet 2

[October 2-5, 2012]
Name: Solutions

1. (a) Show (on the graph) the point P with coordinates $(2,4,1)$ and the point Q with coordinates $(1,2,5)$.
(b) Sketch the position vectors of the two points (\mathbf{P} for P and \mathbf{Q} for Q).

(c) Calculate the distance from P to Q.

Solution: By the distance formula

$$
\begin{aligned}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} & =\sqrt{(1-2)^{2}+(2-4)^{2}+(5-1)^{2}} \\
& =\sqrt{1+4+16}=\sqrt{21}
\end{aligned}
$$

is the distance from P to Q.
(d) Calculate $\|\mathbf{Q}-\mathbf{P}\|$.

Solution: As the vector $\mathbf{Q}-\mathbf{P}$ can be represented by an arrow from the point P to the point Q, the length of the vector must be exactly the distance from P to Q. We've just calculated that as $\sqrt{21}$.
2. For $\mathbf{v}=-3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{w}=6 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}$, calculate
(a) the cosine of the angle between \mathbf{v} and \mathbf{w}

Solution: We know v.w $=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$.
We need to calculate

$$
\begin{aligned}
\mathbf{v} . \mathbf{w} & =(-3)(6)+(7)(-3)+(2)(7) \\
& =-18-21+14=-25 \\
\|\mathbf{v}\| & =\sqrt{(-3)^{2}+7^{2}+2^{2}}=\sqrt{62} \\
\|\mathbf{w}\| & =\sqrt{6^{2}+(-3)^{2}+7^{2}}=\sqrt{94}
\end{aligned}
$$

Then we have

$$
-25=\sqrt{62} \sqrt{94} \cos \theta
$$

from which we get

$$
\cos \theta=\frac{-25}{\sqrt{62} \sqrt{94}}
$$

(b) the unit vector in the same direction as \mathbf{w}.

Solution: The unit vector is \mathbf{w} divided by its length $\|\mathbf{w}\|$, that is

$$
\frac{1}{\|\mathbf{w}\|} \mathbf{w}=\frac{1}{\sqrt{94}} \mathbf{w}=\frac{6}{\sqrt{94}} \mathbf{i}-\frac{3}{\sqrt{94}} \mathbf{j}+\frac{7}{\sqrt{94}} \mathbf{k}
$$

(c) Is \mathbf{v} perpendicular to $3 \mathbf{i}-7 \mathbf{j}+2 \mathbf{k}$? (Why?)

Solution:

$$
\mathbf{v} .(3 \mathbf{i}-7 \mathbf{j}+2 \mathbf{k})=(-3)(3)+7(-7)+2(2)=-54 \neq 0
$$

and so not perpendicular.
3. Find the equation of the points (x, y, z) that are on the sphere of radius 2 and centre $(3,-4,5)$. Find an answer without square roots. [Hint: the points on the sphere are those with distance from the center exactly equal to the radius.]
Solution: If we write the description of the points on the sphere as a formula, we get

$$
\begin{aligned}
\text { distance }((x, y, z),(3,-4,5)) & =2 \\
\sqrt{(x-3)^{2}+(y+4)^{2}+(z-5)^{2}} & =2 \\
(x-3)^{2}+(y+4)^{2}+(z-5)^{2} & =4
\end{aligned}
$$

We have squared both sides to eliminate the square root.
Note: Normally we could introduce extra solutions to an equation by squaring both sides. The equation $t=4$ has just the one solution, but $t^{2}=16$ has two solutions: $t=4$ and $t=-4$. As the distance between points is never negative, we can find the distance if we know its square. So we do not introduce any extra solutions by squaring both sides.

Richard M. Timoney

