1S11 (Timoney) Tutorial sheet 10

[December 4-7, 2012]
Name: Solutions

1. Write a vertex matrix for this directed graph

Solution: In row i we put a 1 in column j when there is a link $i \rightarrow j$. Otherwise 0 . We get the 4×4 matrix

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

2. Draw a graph for this vertex matrix

$$
M=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and then use matrix multiplication to find all the possible 2-hop directed paths on the graph.

Solution:

$$
M^{2}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
2 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

This shows the the 2-hop paths are $1 \rightarrow 5,1 \rightarrow 4,2 \rightarrow 3,2 \rightarrow 5,3 \rightarrow 1,3 \rightarrow 4,4 \rightarrow 2$, $4 \rightarrow 3,4 \rightarrow 55 \rightarrow 15 \rightarrow 25 \rightarrow 3$ and $5 \rightarrow 3$, in addition to the possibility for round trips $1 \rightarrow 1$ and $2 \rightarrow 2$.
3. (a) Is there a matrix that is both strictly upper and strictly lower triangular? (Explain why not or else give an example of one.)
Solution: The zero matrix of any size, such as the 2×2 matrix

$$
\mathbf{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

is both strictly upper triangular (all nonzero entries definitely above the diagonal in fact there are none) and strictly lower triangular.
[In fact no other matrix will do, except the $n \times n$ [square] zero matrix fo any n.]
(b) If A and B are matrices with

$$
A B=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & -3 & 4 \\
0 & 1 & 2
\end{array}\right]
$$

what is trace $(B A)$?
Solution: We know $\operatorname{trace}(B A)=\operatorname{trace}(A B)$ and so

$$
\operatorname{trace}(B A)=\operatorname{trace}(A B)=1-3+2=0
$$

4. For

$$
B=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
-3 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-8 & 3 & 1 & 0
\end{array}\right]
$$

find $B^{2},\left(B^{t}\right)^{2}, B^{3},\left(B^{t}\right)^{3}$ and B^{4}. [Hint: use the rule about products of transposes.]
Solution:

$$
B^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
-7 & -1 & 0 & 0
\end{array}\right]
$$

Using $(A B)^{t}=B^{t} A^{t}\left(\right.$ or $\left.B^{t} A^{t}=(A B)^{t}\right)$ we have

$$
\left(B^{t}\right)^{2}=\left(B^{t}\right)\left(B^{t}\right)=(B B)^{t}=\left(B^{2}\right)^{t}=\left[\begin{array}{cccc}
0 & 0 & 3 & -7 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Next

$$
B^{3}=B B^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-3 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-8 & 3 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
-7 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right]
$$

Then

$$
\left(B^{t}\right)^{3}=\left(B^{3}\right)^{t}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Finally

$$
B^{4}=B B^{3}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-3 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-8 & 3 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Richard M. Timoney

