1S11 (Timoney) Tutorial sheet 10

[December 4 – 7, 2012]

Name: Solutions

1. Write a vertex matrix for this directed graph

Solution: In row i we put a 1 in column j when there is a link $i \rightarrow j$. Otherwise 0. We get the 4×4 matrix

Γ	0	1	0	0]
	0	0	1	0
	1	0	0	1
	0	0	0	0

2. Draw a graph for this vertex matrix

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

and then use matrix multiplication to find all the possible 2-hop directed paths on the graph. *Solution:*

$$M^{2} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

This shows the the 2-hop paths are $1 \rightarrow 5$, $1 \rightarrow 4$, $2 \rightarrow 3$, $2 \rightarrow 5$, $3 \rightarrow 1$, $3 \rightarrow 4$, $4 \rightarrow 2$, $4 \rightarrow 3$, $4 \rightarrow 5$, $5 \rightarrow 1$, $5 \rightarrow 2$, $5 \rightarrow 3$ and $5 \rightarrow 3$, in addition to the possibility for round trips $1 \rightarrow 1$ and $2 \rightarrow 2$.

3. (a) Is there a matrix that is both strictly upper and strictly lower triangular? (Explain why not or else give an example of one.)

Solution: The zero matrix of any size, such as the 2×2 matrix

$$\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

is both strictly upper triangular (all nonzero entries definitely above the diagonal — in fact there are none) and strictly lower triangular.

[In fact no other matrix will do, except the $n \times n$ [square] zero matrix fo any n.]

(b) If A and B are matrices with

$$AB = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

what is trace(BA)?

Solution: We know trace(BA) = trace(AB) and so

$$trace(BA) = trace(AB) = 1 - 3 + 2 = 0$$

4. For

$$B = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -8 & 3 & 1 & 0 \end{bmatrix}$$

find B^2 , $(B^t)^2$, B^3 , $(B^t)^3$ and B^4 . [Hint: use the rule about products of transposes.] *Solution:*

$$B^{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ -7 & -1 & 0 & 0 \end{bmatrix}$$

Using $(AB)^t = B^t A^t$ (or $B^t A^t = (AB)^t$) we have

$$(B^{t})^{2} = (B^{t})(B^{t}) = (BB)^{t} = (B^{2})^{t} = \begin{bmatrix} 0 & 0 & 3 & -7 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Next

Then

Finally

Richard M. Timoney