
Chapter 5. Binary, octal and hexadecimal numbers
A place to look for some of this material is the Wikipedia page
http://en.wikipedia.org/wiki/Binary_numeral_system#Counting_in_binary

Another place that is relevant is http://accu.org/index.php/articles/1558
(which explains many more details thane we will discuss) and the website
http://www.binaryconvert.com

For ASCII (mentioned briefly below) see http://en.wikipedia.org/wiki/ASCII
However, I hope that the explanations given here are adequate.
The material here is probably new to you, but it should not require any prior knowledge. It

really starts with primary school mathematics and is all more or less common sense.
The rationale for including this material in the course is that the ideas are used all through

computing, at least once you look under the cover of a computer.

5.1 Counting. Normally we use decimal or base 10 when we count. What that means is that we
count by tens, hundreds = tens of tens, thousands = tens of hundreds, etc.

We see that in the SI units we are familiar with in science (kilometres = 103 metres, kilo-
grammes, centimetres = 10−3 metres). We can become so used to it that we don’t think about it.
When we write the number 5678, we learned in the primary school that the 8 means 8 units, the
7 is 7 tens, while the remaining digits are 6 hundreds = 6× 102 and 5× 103. So the number 5678
means

5× 103 + 6× 102 + 7× 10 + 8

Although base 10 is the most common, we do see some traces of other bases in every day
life. For example, we normally buy eggs by dozens, and we can at least imagine shops buying
eggs by the gross (meaning a dozen dozen or 122 = 144). So we use base 12 to some extent.

We can see some evidence of base 60 in angles and in time. In time units, 60 seconds is a
minute and 60 minutes (= 602 seconds) is an hour. Logically then we should have 60 hours in a
day? Since we don’t we stop using base 60. In degree measure of angles, we are familiar with
60 minutes in a degree.

5.2 Binary. In binary or base 2 we count by pairs. So we start with zero, then a single unit, but
once we get to two units of any size we say that is a pair or a single group of 2.

So, when we count in base 2, we find:

• 1 is still 1

• 2 becomes a single group of 2 (a single pair)
Using positional notation as we do for decimal, we write this as 10. To make sure we are
clear which base we are using, we may write a subscript 2 as in (10)2

• 3 is (11)2 = one batch of 2 plus 1 unit.

• 4 is (100)2 = one batch of 22 + 0 batches of 2 + 0 units

Using a more succinct format, we can explain how to count in binary as follows:

http://en.wikipedia.org/wiki/Binary_numeral_system#Counting_in_binary
http://accu.org/index.php/articles/1558
http://www.binaryconvert.com
http://en.wikipedia.org/wiki/ASCII

2 2012–13 Mathematics 1S11 (Timoney)

Decimal # in binary Formula for the binary format
1 (1)2 1
2 (10)2 1× 2 + 0
3 (11)2 1× 2 + 1
4 (100)2 1× 22 + 0× 2 + 0
5 (101)2 1× 22 + 0× 2 + 1
6 (110)2 1× 22 + 1× 2 + 0
7 (111)2 1× 22 + 1× 2 + 1
8 (1000)2 1× 23 + 0× 22 + 0× 2 + 0

So we can figure out what number we mean when we write something in binary by adding
up the formula. Mind you that can get tedious, but the principle is not complicated.

At least for small numbers, there is a way to find the binary digits for a given number (i.e.,
given in base 10) by repeatedly dividing by 2. For very small numbers, we can more or less do
it by eye. Say for the number twenty one, we can realise that it is more than 16 = 24 and not as
big as 32 = 25. In fact

21 = 16 + 5 = 16 + 4 + 1 = 24 + 22 + 1 = (10101)2

Or we can start at the other end and realise that since 21 is odd its binary digits must end in 1.
21/2 = 10+ remainder 1.

To explain how this goes a bit more clearly, suppose we are starting with a positive integer
number n (recall that an integer is a whole number, no fractional part). We want to know it in
binary and in order to dicuss what we are doing we will write down the units digit as n0, the next
digit from the right (multiples of 2) as n1, etc. So we suppose the binary representation of the
number n is

n = (nknk−1 · · ·n2n1n0)2 = nk2
k + nk−12

k−1 + · · ·+ n22
2 + n12

1 + n0

where the digits n0, n1, . . . , nk are each either 0 or 1 and k is big enough. (In fact we need k to
be so big that 2k ≤ n < 2k+1.)

If we divide n by 2 we get

quotient = whole number part of
n

2
= nk2

k−1 + nk−12
k−2 + · · ·+ n22

1 + n1

and remainder n0. The remainder is 1 if n is odd and 0 if n is even.
Now if we divide again by 2 we get remainder n1 and new quotient

quotient = nk2
k−2 + nk−12

k−3 + · · ·+ n2

Look again at the case n = 21 as an example. We had 21
2

= 10+ remainder 1. So the last
binary digit is 1 = that remainder. Now 10/2 = 5+ no remainder. That makes the digit in the 2’s
place 0. 5/2 = 2+ remainder 1. So if we repeatedly divide by 2 and keep track of the remainder
each time (even when the remainder is zero) we discover the binary digits one at a time from the
units place up.

One thing to notice about binary is that we only ever need two digits, 0 and 1. We never need
the digit 2 because that always gets ‘carried’ or moved to the next place to the left.

Binary, octal and hexadecimal numbers 3

5.3 Octal. In octal or base 8 we count by 8’s. Otherwise the idea is similar. We need 8 digits
now: 0, 1, 2, 3, 4, 5, 6 and 7. So now zero is still 0 in octal, 1 is 1, 2 is 2, etc. 7 is still 7 in octal,
but eight becomes (10)8. In base 8 (10)8 means 1× 8 + 0.

Using a layout similar to the one used before we can explain how to count in octal as follows:

Decimal # in octal Formula
for the octal
format

1 (1)8 1
2 (2)8 2
7 (7)8 7
8 (10)8 1× 8 = 0
9 (11)8 1× 8 + 1

10 (12)8 1× 8 + 2
16 (20)8 2× 8 + 0
17 (21)8 2× 8 + 1

5.4 Hex. Now we have the idea, we can think of counting in other bases, such as base 6 or base
9, but these are not used in practice. What is used is base 16, also called hexadecimal.

We can go ahead as we did before, just counting in groups and batches of 16. However, we
run into a problem with the notation caused by the fact that the (decimal) number 10, 11, 12
13, 14 and 15 are normally written using two adjacent symbols. If we write 11 in hexadecimal,
should we mean ordinary eleven or 1× 16 + 1?

To get around this difficulty we need new symbols for the numbers ten, eleven, . . . , fifteen.
What we do is use letters a, b, c, d, e and f (or sometimes the capital letters A, B, C, D, E and F).

Thus the number ten becomes a single digit number (a)16 in hexadecimal. Eleven becomes
(b)16, and so on. But sixteen becomes (10)16.

Using a layout similar to the one used before we can explain how to count in hex as follows:

Decimal # in hex Formula for the hex-
adecimal format

1 (1)16 1
9 (9)16 9

10 (a)16 10
15 (f)16 15
16 (10)16 1× 16 = 0
17 (11)16 1× 16 + 1
26 (1a)16 1× 16 + 10
32 (20)16 2× 16 + 0

165 (a5)16 10× 16 + 5
256 (100)16 1× 162 + 0× 16 + 0

5.5 Converting Octal or Hex to binary. We did already discuss some conversions of integers
between different bases.

4 2012–13 Mathematics 1S11 (Timoney)

There is a method based on repeated division and keeping track of remainders. We can use
this to convert from decimal to octal, to hex, or to binary.

If we write out the formula corresponding to a number in binary, octal or hex, we can compute
the number in decimal by evaluating the formula.

These methods involve quite a bit of work, especially if the number is large. However there
is a very simple way to convert between octal and binary. It is based on the fact that 8 = 23 is a
power of 2 and so it is very easy to convert base 8 to base 2.

(541)8 = 5× 82 + 4× 8 + 1

= (1× 22 + 0× 2 + 1)× 26 + (1× 22)× 23 + 1

= 1× 27 + 0× 26 + 1× 26 + 1× 25 + 1

= (101100001)2

If we look at how this works, it basically means that we can convert from octal to binary by
converting each octal digit to binary separately but we must write each digit as a 3 digit binary
number. Redoing the above example that way we have 5 = (101)2 (uses 3 digits anyhow),
4 = (100)2 (again uses 3 digits) and 1 = (1)2 = (001)2 (here we have to force ourselves to use
up 3 digits) and we can say

(541)8 = (101 100 001)2 = (101100001)2

This method works with any number of octal digits and we never have to really convert
anything but the 8 digits 0-7 to binary. It is also reversible. We can convert any binary number to
octal very quickly if we just group the digits in 3’s starting from the units. For example

(1111010100001011)2 = (001 111 010 100 001 011)2 = (172413)8

A similar method works for converting between binary and hex, except that now the rule is
“4 binary digits for each hex digit”. It all works because 16 = 24. For example

(a539)16 = (1010 0101 0011 1001)2 = (1010010100111001)2

Or going in reverse

(1111010100001011)2 = (1111 0101 0000 1011)2 = (f50b)16

We can use these ideas to convert octal to hex or vice versa by going via binary. We never
actually have to convert any number bigger than 15.

If we wanted to convert a number such as 5071 to binary, it may be easier to find the octal rep-
resentation (by repeatedly dividing by 8 and keeping track of all remainders) and then converting

Binary, octal and hexadecimal numbers 5

to binary at the end via the “3 binary digits for one octal” rule.

5071

8
= 633 + remainder 7

633

8
= 79 + remainder 1

79

8
= 9 + remainder 7

9

8
= 1 + remainder 1

1

8
= 0 + remainder 1

(5071)10 = (11717)8

= (001 001 111 001 111)2

= (001001111001111)2

= (1001111001111)2

5.6 Relation with computers. Although computers are very sophisticated from the outside,
with all kinds of flashy buttons, screens and so forth, the basic works are essentially many rows
of on/off switches. Clearly a single on/off switch has only 2 possible settings of or states, but a
row of 2 such switches has 4 possible states.

on on on off off on off off

A row of 3 switches has twice as many possible setting because the third switch can be either
on or off for each of the 4 possibilities for the first two. So 23 possibilities for 3 switches. In
general 28 = 256 possibilities for 8 switches, 2n possible settings for a row of n switches.

Computers generally work with groups of 32 switches (also called 32 bits, where a ‘bit’ is
the official name for the position that can be either on or off) and sometimes now with groups of
64. With 32 bits we have a total of 232 possible settings.

How big is 232? We could work out with a calculator that it is 4294967296 = 4.294967296×
109 but there is a fairly simple trick for finding out approximately how large a power of 2 is. It is
based on the fact that

210 = 1024 ∼= 103

Thus
232 = 22 × 230 = 4× (210)3 ∼= 4× (103)3 = 4× 109

You can see that the answer is only approximate, but the method is fairly painless (if you are able
to manipulate exponents).

5.7 Integer format storage. Computers use binary to store everything, including numbers. For
numbers, the system used for integers (that is whole numbers, with no fractional part) is simpler
to explain than the common system for dealing with numbers that may have fractional parts.

6 2012–13 Mathematics 1S11 (Timoney)

In general modern computers will use 32 bits to store each integer. (Sometimes, they use 64
but we will concentrate on a 32 bit system.) How are the bits used? Take a simple example like
9. First write that in binary

9 = (1001)2

and that only has 4 digits. We could seemingly manage by using only 4 bits (where we make
them on, off, off, on) and it seems a waste to use 32 bits. However, if you think about it you
can see that we would need to also record how many bits we needed each time. Generally it is
simpler to decide to use 32 bits from the start. For this number 9 we can pad it out by putting
zeros in front

9 = (1001)2 = (00 . . . 001001)2

and then we end up filling our row of 32 bits like this:

9 0 0 . . . 0 0 1 0 0 1
Bit position: 1 2 . . . 27 28 29 30 31 32

One practical aspect of this system is that it places a limit on the maximum size of the integers
we can store.

Since we allocate 32 bits we have a total of 232 ∼= 4 × 109 different settings and so we
have room for only that many different integers. So we could fit in all the integers from 0 to
232 − 1, but that is usually not such a good strategy because we may also want to allow room
for negative integers. If we don’t especially favour positive integers over negative ones, that
leaves us with space to store the integers from about −231 to 231. To be precise, that would be
2× 231+1 = 232+1 numbers if we include zero and so we would have to leave out either±231.

Notice that 231 ∼= 2× 109 is not by any means a huge number. In a big company, there would
be more Euros passing through the accounts than that in a year. In astronomy, the number of
kilometres between stars would usually be bigger than that.

Computers are not actually limited to dealing with numbers less than 2× 109, but they often
are limited to dealing in this range for exact integer calculations. We will return to another
method for dealing with numbers that have fractional parts and it allows for numbers with much
larger magnitudes. However, this is done at the expense of less accuracy. When dealing with
integers (that are within the range allowed) we can do exact calculations.

Returning to integers, we should explain about how to deal with negative integers. One way
would be to allocate one bit to be a sign bit. So bit number 1 on could mean a minus sign. In this
way we could store

−9 = −(1001)2 = −(0 . . . 001001)2
by just turning on the first bit. However, if you ask your calculator to tell you −9 in binary,
you will get a different answer. The reason is that computers generally do something more
complicated with negative integers. This extra complication is not so important for us, but just
briefly the idea is that the method used saves having to ever do subtraction. So −1 is actually
stored as all ones:

-1 1 1 . . . 1 1 1 1 1 1
1 0 0 . . . 0 0 0 0 0 1

Bit position: 1 2 . . . 27 28 29 30 31 32

Binary, octal and hexadecimal numbers 7

If you add 1 to that in binary, you will have to carry all the time. Eventually you will get zeros in
all 32 allowable places and you will have to carry the last 1 past the end. Since, only 32 places
are allowed, this final carried 1 just disappears and we get 32 zeros, or 0.

In general, to store a negative number we take the binary form of 1 less than the number and
then take what is called the ‘ones complement’ of that. So when −9 is stored we would look at
the way we would store +8 and then flip all the 1’s to 0’s and the 0’s to 1’s.

8 0 0 . . . 0 0 1 0 0 0
-9 1 1 . . . 1 1 0 1 1 1

Bit position: 1 2 . . . 27 28 29 30 31 32

Using this method of storing negative numbers, all subtractions can be performed as though
they were additions (using the carrying rules and the possibility that a 1 will get lost past the
32nd position).

By the way, the numbering of the bits is not really fixed. We could number them from right
to left instead, but this really depends on whether you are looking at the bits from the top or the
bottom. In any case, you can’t really see bits normally.

Simple computer programs that use integers will be limited to the range of integers from
−231 up to 231 − 1 (which is the number that has 31 1’s in binary). However, it is possible to
write programs that will deal with a larger range of integers. You can arrange your program to
use more than 32 bits to store each integer, for example to use several rows of 32 bits. However,
the program will then generally have to be able to implement its own carrying rules and so forth
for addition and subtraction of these bigger integers. So you will not simply be able to use the
ordinary plus and times that you can use with regular integers.

5.8 Why octal and Hex?. We can now explain why computer people are fond of base 16 or hex.
Octal looks easier to read (no need to worry about the new digits a for ten, etc) but in computers
we are frequently considering 32 bits at a time. Using the “3 binary for one octal” rule, this
allows us to write out the 32 bits quickly, but it takes us eleven octal digits. The messy part is
that we really don’t quite use the eleventh octal digit fully. It can be at most (11)2 = 3.

With hex, we have a “4 binary digits for one hex” rule and 32 binary digits or bits exactly
uses up 8 hex digits.

Computers use binary for everything, not just numbers. For example, text is encoded in
binary by numbering all the letters and symbols. The most well used method for doing this is
called ASCII (an acronym that stands for ‘American Standard Code for Information Interchange).
and it uses 7 binary digits or bits for each letter. You may be surprised that there are 27 = 128
letters, as there seem to be only 26 normally. But if you think a little you will see that there are
52 if you count upper and lower case separately. Moreover there are punctuation marks that you
will see on your computer keyboard like

! , . ? / \ @ # ˜ [] { } () * & ˆ % $

and we also need to keep track of the digits 0-9 as symbols (separately to keeping track of the
numerical values). Finally the ASCII code allocates numbers or bit patterns to some ‘invisible’
things like space, tab, new line and in the end 127 is just barely enough. On a UNIX system, you
can find out what the ASCII code is by typing the command

8 2012–13 Mathematics 1S11 (Timoney)

man ascii

at the command line prompt. Here is what you will see:

ASCII(7) FreeBSD Miscellaneous Information Manual ASCII(7)

NAME
ascii - octal, hexadecimal and decimal ASCII character sets

DESCRIPTION
The octal set:

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ’
050 (051) 052 * 053 + 054 , 055 - 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 ˆ 137 _
140 ‘ 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 | 175 } 176 ˜ 177 del

The hexadecimal set:

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si
10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’
28 (29) 2a * 2b + 2c , 2d - 2e . 2f /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [5c \ 5d] 5e ˆ 5f _
60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b { 7c | 7d } 7e ˜ 7f del

The decimal set:

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel
8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si
16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb
24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us
32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’
40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ˆ 95 _
96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

Binary, octal and hexadecimal numbers 9

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ˜ 127 del

FILES
/usr/share/misc/ascii

HISTORY
An ascii manual page appeared in Version 7 AT&T UNIX.

BSD June 5, 1993

Another place to find this information is at http://en.wikipedia.org/wiki/ASCII
I certainly would not try to remember this, but you can see that the symbol ‘A’ (capital A)

is given a code (101)8 = (41)16 = (65)10 and that the rest of the capital letters follow A in the
usual order. This means that A uses the 7 bits 1000001 in ASCII but computers almost invariably
allocate 8 bits to store each letter. They sometimes differ about what they do with the ‘wasted’
8th bit, but the extra bit allows space for 28 = 256 letters while ASCII only specifies 128 different
codes. If you think about it you will see that there are no codes for accented letters like á or è
(which you might need in Irish or French), no codes for the Greek or Russian letters, no codes
for Arabic or Hindu. In fact 8 bits (or 256 total symbols) is nowhere near enough to cope with
all the alphabets of the World. That is a reflection of the fact that ASCII goes back to the early
days of computers when memory was relatively very scarce compared to now, and also when the
computer industry was mostly American. The modern system (not yet universally used) is called
UNICODE and it allocates 16 bits for each character. Even with 216 = 65536 possible codes,
there is a difficulty accommodating all the worlds writing systems (including Chinese, Japanese,
mathematical symbols, etc).

5.9 Converting fractions to binary. We now look at a way to convert fractions to binary. We
already mentioned that in principle every real number, including fractions, can be represented
as a “binary decimal” (or really using a “binary point”). We have already looked into whole
numbers fairly extensively and what remains to do is to explain a practical way to find the binary
digits for a fraction. You see if we start with (say 34

5
we can say that is 6 + 4

5
. We know

6 = (110)2 and if we could work out how to represent 4
5

as 0. something in binary then we would
have 34

5
= 6 + 4

5
= (110. something)2.

To work out what ‘something’ should be we work backwards from the answer. We can’t
exactly do that without having the answer, but we can proceed as we do in algebra by writing
down the unknown digits. Later we will work them out. Say the digits we want are b1, b2, b3, . . .
and so

4

5
= (0.b1b2b3b4 · · ·)2

We don’t know any of b1, b2, b3, . . . yet but we know they should be base 2 digits and so each one
is either 0 or 1. We can write the above equation as a formula and we have

4

5
=
b1
2
+
b2
22

+
b3
23

+
b4
24

+ · · ·

If we multiply both sides by 2, we get

8

5
= b1 +

b2
2
+
b3
22

+
b4
23

+ · · ·

http://en.wikipedia.org/wiki/ASCII

10 2012–13 Mathematics 1S11 (Timoney)

In other words multiplying by 2 just moves the binary point and we have

8

5
= (b1.b2b3b4 · · ·)2

Now if we take the whole number part of both sides we get 1 on the left and b1 on the right. So
we must have b1 = 1 . But if we take the fractional parts of both sides we have

3

5
= (0.b2b3b4 · · ·)2

We are now in a similar situation to where we began (but not with the same fraction) and we can
repeat the trick we just did. Double both sides again

6

5
= (b2.b3b4b5 · · ·)2

Take whole number parts of both sides: b2 = 1 . Take fractional parts of both sides.

1

5
= (0.b3b4b5 · · ·)2

We can repeat our trick as often as we want to uncover as many of the values b1, b2, b3, etc as
we have the patience to discover.

What we have is a method, in fact a repetitive method where we repeat similar instructions
many times. We call a method like this an algorithm, and this kind of thing is quite easy to
programme on a computer because one of the programming instructions in almost any computer
language is REPEAT (meaning repeat a certain sequence of steps from where you left off the last
time).

In this case we can go a few more times through the steps to see how we get on. Double both
sides again.

2

5
= (b3.b4b5b6 · · ·)2

Whole number parts. b3 = 0 . Fractional parts

2

5
= (0.b4b5b6 · · ·)2

Double both sides again.
4

5
= (b4.b5b6b7 · · ·)2

Whole number parts. b4 = 0 . Fractional parts

4

5
= (0.b5b6b7 · · ·)2

This is getting monotonous, but you see the idea. You can get as many of the b’s as you like.

Binary, octal and hexadecimal numbers 11

But, if you look more carefully, you will see that it has now reached repetition and not just
monotony. We are back to the same fraction as we began with 4

5
. If we compare the last equation

to the starting one
4

5
= (0.b1b2b3b4 · · ·)2

we realise that everything will unfold again exactly as before. We must find b5 = b1 = 1 ,
b6 = b2 = 1 , b7 = b3 = 0 , b8 = b4 = 0 , b9 = b5 = b1 and so we have a repeating pattern

of digits 1100. So we can write the binary expansion of 4
5

down fully as a repeating pattern

4

5
= (0.1100)2

and our original number as
34

5
= (110.1100)2

5.10 Floating point format storage. In order to cope with numbers that are allowed to have
fractional parts, computers use a binary version of the usual ‘decimal point’. Perhaps we should
call it a ‘binary point’ as “decimal” refers to base 10.

Recall that what we mean by digits after the decimal point has to do with multiples of 1/10,
1/100 = 1/102 = 10−2, etc. So the number 367.986 means

367.986 = 3× 102 + 6× 10 + 7 +
9

10
+

8

102
+

6

103

We use the ‘binary point’ in the same way with powers of 1/2. So

(101.1101)2 = 1× 22 + 0× 2 + 1 +
1

2
+

1

22
+

0

23
+

1

24

As in the familiar decimal system, every number can be written as a ‘binary decimal’. (Well
that is a contradictory statement. Really we should say we can write every number in binary
using a binary point.) As in decimal, there can sometimes be infinitely many digits after the
point.

What we do next is use a binary version of scientific notation. (You will see the ordinary
decimal scientific notation on your calculator at times, when big numbers are written with an E.)
The usual decimal scientific notation is like this

54321.67 = 5.432167× 104

We refer to the 5.4321 part (a number between 1 and 10 or between -1 and -10 for negative
numbers) as the mantissa. The power (in this case the 4) is called the exponent. Another decimal
example is

−0.005678 = −5.678× 10−3

and here the mantissa is −5.678 while the exponent is −3.

12 2012–13 Mathematics 1S11 (Timoney)

This is all based on the fact that multiplying or dividing by powers of 10 simply moves the
decimal point around. In binary, what happens is that multiplying or dividing by powers of 2
moves the ‘binary point’.

(101)2 = 1× 22 + 0× 2 + 1

(10.1)2 = 1× 2 + 0 +
1

2
= (101)2 × 2−1

(1101.11)2 = (1.10111)2 × 23

This last is an example of a number in the binary version of scientific notation. The mantissa is
(1.110111)2 and we can always arrange (no matter what number we are dealing with) to have
the mantissa between 1 and 2. In fact always less than 2, and so beginning with 1. something
always. For negative numbers we would need a minus sign in front. The exponent in this last
example is 3 (the power that goes on the 2).

What we do then is write every number in this binary version of scientific notation. That
saves us from having to record where to put the binary point, because it is always in the same
place. Or really, the exponent tells us how far to move the point from that standard place.

Computers then normally allocate a fixed number of bits for storing such numbers. The usual
default is to allocate 32 bits in total (though 64 is quite common also). Within the 32 bits they
have to store the mantissa and the exponent. Computers do everything in binary. The mantissa
is already in binary, but we also need the exponent in binary. So in the last example the mantissa
is +(1.110111)2 while the exponent is 3 = (11)2. Computers usually allocate 24 bits for storing
the mantissa (including its possible sign) and the remaining 8 bits for the exponent.

In our little example, 24 bits is plenty for the mantissa and we would need to make it longer
to fill up the 24 bits: (1.110111000 . . .)2 will be the same as (1.110111)2. However, there are
numbers that need more than 24 binary digits in the mantissa, and what we must then do is round
off. In fact, we have to chop off the mantissa after 23 binary places (or more usually we will
round up or down depending on whether the digit in the next place is 1 or 0).

The web site http://accu.org/index.php/articles/1558 goes into quite a bit
of detail about how this is done. What you get on http://www.binaryconvert.com
(under floating point) tells you the outcome in examples but there are many refinements used in
practice that are not evident from that and that also we won’t discuss.

The method we have sketched is called single precision floating point storage.
Another common method, called double precision, uses 64 bits to store each number, 53 for

the mantissa (including one for the sign) and 11 for the exponent.

5.11 Limitations of floating point. Apart from the information about how the computer uses
binary to store these ‘floating point numbers’1 we can get an idea of the scope and accuracy that
this system allows.

The largest possible number we can store has mantissa (1.111 . . .)2 (with the maximum2

possible number of 1’s) and exponent as large as possible. Now (1.111 . . .)2 (with 23 1’s after
1the words indicate that the position of the binary point is movable, controlled by the exponent
2The maximum in single precision, where we use 23 bits for the mantissa excluding the sign bit, would be 23

1’s but in fact the usual system does not store the 1 before the points as it is always there — so we can manage 24
1’s total, 23 places after the point

http://accu.org/index.php/articles/1558
http://www.binaryconvert.com

Binary, octal and hexadecimal numbers 13

the point) is just about 2 and the largest possible exponent is 27 − 1 = 127. [We are allowed 8
bits for the exponent, which gives us room for 28 = 256 different exponents. About half should
be negative, and we need room for zero. So that means we can deal with exponents from −128
to +127.] Thus our largest floating point number is about

2× 2127 = 2128

This is quite a big number and we can estimate it by using the 210 ∼= 103 idea

2128 = 28 × 2120 = 256× (210)12 ∼= 256× (103)12 = 256× 1036 = 2.56× 1038

This is quite a bit larger than the limit of around 2× 109 we had with integers. Indeed it is large
enough for most ordinary purposes.

We can also find the smallest positive number that we can store3. It will have the smallest
possible mantissa (1.0)2 and the most negative possible exponent, −128. So it is

1× 2−128 =
1

2128
=

1

2.56× 1038
∼=

4

10
× 10−38 = 4× 10−39

or, getting the same result another way,

1× 2−128 =
22

2130
=

22

(210)13
∼=

4

(103)13
= 4× 10−39

This is pretty tiny, tiny enough for many purposes.
If we use double precision (64 bits per number, requires twice as much computer memory per

number) we get an exponent range from −210 = −1024 to 210 − 1 = 1023. The largest possible
number is

21024 = 24 × 21020 = 16× (210)102 ∼= 16× (103)102 = 1.6× 10307

and the smallest is the reciprocal of this.
In both single and double precision, we have the same range of sizes for negative numbers as

we have for positive numbers.
So the limitation on size are not severe limitations, but the key consideration is the limit on

the accuracy of the mantissa imposed by the 24 bit limit (or the 53 bit limit for double precision).
We will return to this point later on, but the difficulty is essentially not with the smallest number
we can store but with the next biggest number greater than 1 we can store. That number has
exponent 0 and mantissa (1.000 . . . 01)2 where we put in as many zeros as we can fit before the
final 1. Allowing 1 sign bit, we have 23 places in total and so we fit 22 zeros. That means the
number is

1 +
1

223
= 1 +

27

230
= 1 +

27

(210)3
∼= 1 +

127

(103)3
= 1 +

1.3× 102

109
= 1 + 1.2× 10−7

3In this discussion some details are not fully in accordance with everything that goes on in practice, where there
is a facility for somewhat smaller posoitive numbers with fewer digits of accuracy in the mantissa. These details are
fairly well explained at http://accu.org/index.php/articles/1558

http://accu.org/index.php/articles/1558

14 2012–13 Mathematics 1S11 (Timoney)

(An accurate calculation gives 1 + 1.19209290 × 10−7 as the next number bigger than 1 that
computers can store using the commonly used IEEE standard method.)

A consequence of this is that we cannot add a very small number to 1 and get an accurate
answer, even though we can keep track of both the 1 and the very small number fine. For example
the small number could be 2−24 or 2−75), but we would be forced to round 1+ either of those
numbers to 1.

We can get a similar problem with numbers of different magnitude than 1. If we look at
the problem relative to the size of the correct result, we get a concept called relative error for a
quantity.

5.12 Relative Errors. The idea is that an error should not be considered in the abstract. [An
error of 1 milimetre may seem small, and it would be quite small if the total magnitude of the
quantity concerned was 1 kilometre. Even if the total magnitude was 1 metre, 1 milimetre may
well be not so significant, depending on the context. But if the measurement is for the diameter
of a needle, then a 1 milimetre error could be huge.]

If we measure (or compute) a quantity where the ‘true’ or ‘correct’ answer is x but we get a
slightly different answer x̃ (maybe because of inaccuracies in an experiment or because we made
some rounding errors in the calculation) then the error is the difference

error = x− x̃ = (true value)− (approximate value)

Normally we don’t worry about the sign and only concentrate on the magnitude or absolute
value of the error. In order to asses the significance of the error, we have to compare it to the size
of the quantity x.

The relative error is a more significant thing:

relative error =
error

true value
=

(true value)− (approximate value)
true value

=
x− x̃
x

It expresses the error as a fraction of the size of the thing we are aiming at. 100 times this give
the percentage error.

5.13 Example. Suppose we use 22
7

as an approximation to π. Then the relative error is

relative error =
(true value)− (approximate value)

true value
=
π − 22

7

π
= 0.000402

or 0.04%.

5.14 Remark. Another way to look at the idea of a relative error will be to consider the number
of significant figures in a quantity. What happens with single precision floating point numbers is
that we have at most 23 significant binary digits. When translated into decimal, this means 6 or 7
significant digits. That means that a computer program that prints an answer 6543217.89 should
normally not be trusted completely in the units place. (The 7 may or may not be entirely right
and the .89 are almost certainly of no consequence.) That is even in the best possible case. There

Binary, octal and hexadecimal numbers 15

may also be more significant errors along the way in a calculation that could affect the answer
more drastically.

If a computer works in double precision, then there is a chance of more significant digits. In
double precision, the next number after 1 is 1+ 2−52 ∼= 1+2.6× 10−16 and we can get about 15
accurate digits (if all goes well).4

5.15 Linear approximation. Here we just recall briefly the linear approximation formula. It
applies to functions f = f(x) (of a single variable x) with a derivative f ′(a) that is defined at
least at one point x = a.

The graph y = f(x) of such a function has a tangent line at the point on the graph with x = a
(which is the point with y = f(a) and so coordinates (a, f(a))). The tangent line is the line with
slope f ′(a) and going through the point (a, f(a)) on the graph.

We can write the equation of the tangent line as

y = f(a) + f ′(a)(x− a)

The linear approximation formula says that the graph y = f(x) will follow the graph of the
tangent line as long as we stay close to the point where it is tangent, that is keep x close to a. It
says

f(x) ∼= f(a) + f ′(a)(x− a) for x near a

The advantage is that linear functions are easy to manage, much more easy than general
functions. The disadvantage is that it is an approximation.

5.16 Condition Numbers. We can use linear approximation to understand the following prob-
lem.

Say we measured x but our answer was x̃ and then we compute with that to try to find
f(x) (some formula we use on our measurement). If there are no further approximation in the
calculation we will end up with f(x̃) instead of f(x). How good an approximation is f(x̃) to the
correct value f(x)?

We assume that x̃ is close to x and so linear approximation should be valid. We use the linear
approximation formula

f(x) ∼= f(a) + f ′(a)(x− a) x near a

with x replaced by x̃
f(x̃) ∼= f(a) + f ′(a)(x̃− a) x̃ near a

and then a replaced by x
f(x̃) ∼= f(x) + f ′(x)(x̃− x)

4A more precise calcualtion than this rough one gives the result 1 + 2.2204460492503131× 10−16.

16 2012–13 Mathematics 1S11 (Timoney)

So the final error

(true value)− (approximate value) = f(x)− f(x̃) ∼= f ′(x)(x− x̃)

Notice that x− x̃ is the error in the initial measurement and so we see that the derivative f ′(x) is
a magnifying factor for the error.

But we are saying above that relative errors are more significant things than actual errors. So
we recast in terms of relative errors. The relative error in the end (for f(x)) is

f(x)− f(x̃)
f(x)

∼=
f ′(x)

f(x)
(x− x̃)

To be completely logical, we should work with the relative error at the start x−x̃
x

instead of the
actual error x− x̃. We get

f(x)− f(x̃)
f(x)

∼=
xf ′(x)

f(x)

x− x̃
x

or

relative error in value for f(x) =
xf ′(x)

f(x)
(relative error in value for x)

Thus the relative error will be magnified or multiplied by the factor xf ′(x)
f(x)

and this factor is called
the condition number.

In summary

condition number =
xf ′(x)

f(x)

5.17 Examples. (i) Find the condition number for f(x) = 4x5 at x = 7.

xf ′(x)

f(x)
=
x(20x4)

4x5
=

20x5

4x5
= 5.

So in this case it does happens not to depend on x.

(ii) Use the condition number to estimate the error in 1/x if we know x = 4.12± 0.05.

If we take f(x) = 1/x we can work out its condition number at x = 4.12:

xf ′(x)

f(x)
=
x
(−1
x2

)
1
x

=
−1
x
1
x

= −1

This means it does not depend on 4.12 in fact.

Now our initial value x = 4.12± 0.05 means we have a relative error of (at most)

±0.05
4.12

∼= ±0.012

Binary, octal and hexadecimal numbers 17

The relative error in f(4.12) = 1/(4.12) is then going to be about the same (because the
condition number is −1 and this multiples the original relative error). So we have, using
x̃ = 4.12 as our best approximation to the real x,

f(x̃) =
1

x̃
=

1

4.12
= 0.242718

and this should have a relative error of about 0.012. The magnitude of the error is therefore
(at worst) about (0.012)(0.242718) = 0.0029 or about 0.003. So we have the true value of

1

x
= 0.242718± 0.003 or, more realistically 0.243± 0.003

(no point in giving the 718 as they are not at all significant).

(iii) f(x) = ex. Condition numbers at x = 10/3 is xf ′(x)/f(x) = xex/ex = x = 10/3 =
3.3333̇. So if we use x̃ = 3.33 instead of x = 10/3 we would have a relative error to begin
with

relative error in x =
10
3
− 3.33
10
3

= 0.001

(that is an error of 0.1%). If we now compute e3.33 while we ought to have computed
e10/3 we will have a relative error about 10/3 times larger (the condition number is 10/3, or
roughly 3). So we will end up with a 0.3% error. In other words, still quite small.

If instead we were working with x = 100/3 and we took x̃ = 33.3, we would have the
same initial relative error

relative error in x =
100
3
− 33.3
100
3

= 0.001

but the condition number for ex is now x ∼= 33. The error in using e33.3 where we should
have had e100/3 will be a relative error about 33 times bigger than the initial one, or 33 ×
0.001 = 0.033. This means a 3.3% error (not very large perhaps, but a lot larger than the
very tiny 0.1% we began with.

In fact e33.3 = 2.89739× 1014 and 3.3% of that is 9.56137× 1012.

(iv) For f(x) = x2 − 10x+ 11, find the condition number at x = 10.

Answer:
xf ′(x)

f(x)
|x=10=

100

11
∼= 9.

Richard M. Timoney December 7, 2012

