2E1 (Timoney) Tutorial sheet 9

[Tutorials December 6 – 7, 2006]

Name: Solutions

1. Find the local maximum and local minimum points of the function

$$h(x,y) = 5xy - 7x^2 + 3x - 6y.$$

Solution: To find the critical points, set both partials of h equal 0.

$$\frac{\partial h}{\partial x} = 5y - 14x + 3$$
$$\frac{\partial h}{\partial y} = 5x - 6$$
$$5x - 6 = 0 \quad \text{gives}$$
$$x = \frac{6}{5}$$
$$5y - 14x + 3 = 0$$
$$5y - 14\frac{6}{5} + 3 = 0$$
$$5y = \frac{84 - 15}{5} = \frac{69}{5}$$
$$y = \frac{69}{25}$$

Thus there is only one critical point $(\frac{6}{5}, \frac{69}{25})$. For the second derivative test, we calculate

$$\frac{\partial^2 h}{\partial x^2} = -14 \quad \frac{\partial^2 h}{\partial x \partial y} = 5$$
$$\frac{\partial^2 h}{\partial x \partial y} = 5 \quad \frac{\partial^2 h}{\partial y^2} = 0$$

Thus

$$\Delta = \frac{\partial^2 h}{\partial x^2} \frac{\partial^2 h}{\partial y^2} - \left(\frac{\partial^2 h}{\partial x \partial y}\right)^2 = (-14)(0) - 5^2 = -25 < 0.$$

Thus the critical point is a saddle point. There are no local max or min points for h.

2. Find the points on the surface $z^2 - xy = 4$ closest to the origin. [Hint: Calculations are easier if you minimize $f(x, y, z) = x^2 + y^2 + z^2$ = the square of the distance to the origin, rather than its square root.]

Solution: We can think of this as a Lagrange multiplier problem. Let $f(x, y, z) = x^2 + y^2 + z^2$. (The minimum distance and the minimum value of f will be at the same point.) If we take $g(x, y, z) = z^2 - xy - 4$, we have the constraint g(x, y, z) = 0 and so Lagrange

multipliers says that at the minimum (if there is one) we should have $\nabla f = \lambda \nabla g$ as well as g(x, y, z) = 0. This gives us a system of 4 equations

$$\left\{ \begin{array}{rrr} (2x,2y,2z) &=& \lambda(-y,-x,2z) \\ z^2-xy-4 &=& 0 \end{array} \right.$$

From the equation $2z = 2\lambda z$ we see that $(1 - \lambda)z = 0$ and so either $\lambda = 1$ or z = 0.

If $\lambda = 1$, we have to have 2x = -y and 2y = -x so that x = -y/2 = x/4. That forces x = y = 0 and so then we get $z = \pm 2$ from $z^2 - xy - 4 = 0$. That leaves us with the two points $(0, 0, \pm 2)$ to consider. Both are distance 2 from the origin.

If z = 0, then we have $2x = -\lambda y$ and $2y = -\lambda x$. These give $x = (-\lambda/2)y = (-\lambda/2)^2 x$. So either $\lambda^2/4 = 1$ or we must have x = 0. We can rule out x = 0 because we would then have $y = (-\lambda/2)x = 0$ and (0, 0, 0) does not satisfy $z^2 - xy - 4 = 0$. So we are left with $\lambda = \pm 2$. If $\lambda = 2$ then x = -y and from $z^2 - xy - 4 = 0$ we get $0 + x^2 = 4$, so $x = \pm 2$. We get the points $(\pm 2, \pm 2, 0)$ (which are at distance $2\sqrt{2}$ from the origin).

Finally, if z = 0 and $\lambda = -2$ we have x = y and from $z^2 - xy - 4 = 0$ we get $0 - x^2 - 4 = 0$, which can't be.

The only possible points then are $(0, 0, \pm 2)$ and $(\pm 2, \pm 2, 0)$. Since it stands to reason (more or less) that there should be a closest point to the origin, we can say that the closest points are $(0, 0, \pm 2)$.

Richard M. Timoney