2E1 (Timoney) Tutorial sheet 7
[Tutorials November 22 — 23, 2006]

Name: Solutions

1. Find the equation of the tangent plane to the graph z = x sin y at the point where (z,y) =
(1,7/3).

Solution: We can do this with the linear approximation formula that z = f(z,y) = zsiny
is approximately the same as the linear approximation
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(when (x,y) is near (1,7/3)) and this is the equation of the tangent plane to the graph.
We can work out f(1,7/3) = sin(7/3) = v/3/2 and we can calculate
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and so we get that the equation is
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Alternatively we can say that the graph is the level surface g(x,y, z) = 0 to the function
g(w,y,2) = z—wsiny at the point (1, 7/3,sin(r/3)) = (1,7/3,v/3/2) and so the tangent
plane has the gradient vector Vg |(177T /3,/3/2) s normal vector. And it is a plane through
the point (1,7/3,/3/2). Using (o, 3,7) = Vg |(1.7/3,v/3/2) We can write that the equation
should be

ar+ fy+yz=c

and use the point to find c. Or we can write that the equation is
a(z —1)+ By — 7 /3) +v(z — V3/2) = 0.

We need to know the values of the partials of ¢ at the point (1,7/3,1/3/2) and so we
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So the equation is

2. Find the equation of the tangent plane to the surface
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at the point (1,1, 1).

Solution: We are getting the tangent plane to a level surface f(x,y, z) = 2e/3 where the
function f(x,y, z) is given by the left hand side of the equation. So the normal vector to
the tangent plane is the gradient of f evaluated at the point (1,1, 1). We compute
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For the tangent plane we get
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and we could simplify this by dividing by e/9 to get the equivalent equation

0z—-1)+4y—1)+(z—1)=0.
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