2E1 (Timoney) Tutorial sheet 7

[Tutorials November 22 - 23, 2006]
Name: Solutions

1. Find the equation of the tangent plane to the graph $z=x \sin y$ at the point where $(x, y)=$ ($1, \pi / 3$).
Solution: We can do this with the linear approximation formula that $z=f(x, y)=x \sin y$ is approximately the same as the linear approximation

$$
z=f(1, \pi / 3)+\left.\frac{\partial f}{\partial x}\right|_{(1, \pi / 3)}(x-1)+\left.\frac{\partial f}{\partial y}\right|_{(1, \pi / 3)}(y-\pi / 3)
$$

(when (x, y) is near $(1, \pi / 3)$) and this is the equation of the tangent plane to the graph.
We can work out $f(1, \pi / 3)=\sin (\pi / 3)=\sqrt{3} / 2$ and we can calculate

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\sin y & & \frac{\partial f}{\partial y}=x \cos y \\
\left.\frac{\partial f}{\partial x}\right|_{(1, \pi / 3)}=\sin (\pi / 3) & =\sqrt{3} 2 & & \left.\frac{\partial f}{\partial y}\right|_{(1, \pi / 3)}=\cos (\pi / 3)=1 / 2
\end{aligned}
$$

and so we get that the equation is

$$
z=\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(x-1)+\frac{1}{2}\left(y-\frac{\pi}{3}\right)
$$

Alternatively we can say that the graph is the level surface $g(x, y, z)=0$ to the function $g(x, y, z)=z-x \sin y$ at the point $(1, \pi / 3, \sin (\pi / 3))=(1, \pi / 3, \sqrt{3} / 2)$ and so the tangent plane has the gradient vector $\left.\nabla g\right|_{(1, \pi / 3, \sqrt{3} / 2)}$ as normal vector. And it is a plane through the point $(1, \pi / 3, \sqrt{3} / 2)$. Using $(\alpha, \beta, \gamma)=\left.\nabla g\right|_{(1, \pi / 3, \sqrt{3} / 2)}$ we can write that the equation should be

$$
\alpha x+\beta y+\gamma z=c
$$

and use the point to find c. Or we can write that the equation is

$$
\alpha(x-1)+\beta(y-\pi / 3)+\gamma(z-\sqrt{3} / 2)=0 .
$$

We need to know the values of the partials of g at the point $(1, \pi / 3, \sqrt{3} / 2)$ and so we compute

$$
\begin{aligned}
\frac{\partial g}{\partial x}=-\sin y & \frac{\partial g}{\partial y}=-x \cos y \\
\frac{\partial g}{\partial z} & =1 \\
\left.\frac{\partial g}{\partial x}\right|_{(1, \pi / 3, \sqrt{3} / 2)}=-\sin (\pi / 3)=-\sqrt{3} / 2 & \left.\frac{\partial g}{\partial y}\right|_{(1, \pi / 3, \sqrt{3} / 2)}=-\cos (\pi / 3)=-1 / 2 \\
\left.\frac{\partial g}{\partial z}\right|_{(1, \pi / 3, \sqrt{3} / 2)} & =1
\end{aligned}
$$

So the equation is

$$
-\frac{\sqrt{3}}{2}(x-1)-\frac{1}{2}\left(y-\frac{\pi}{3}\right)+1\left(z-\frac{\sqrt{3}}{2}\right)=0 .
$$

2. Find the equation of the tangent plane to the surface

$$
\frac{x^{2} e^{x} y+x e^{y} z}{x+y+z}=\frac{2 e}{3}
$$

at the point $(1,1,1)$.
Solution: We are getting the tangent plane to a level surface $f(x, y, z)=2 e / 3$ where the function $f(x, y, z)$ is given by the left hand side of the equation. So the normal vector to the tangent plane is the gradient of f evaluated at the point $(1,1,1)$. We compute

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\left(2 x e^{x} y+x^{2} e^{x} y+e^{y} z\right)(x+y+z)-\left(x^{2} e^{x} y+x e^{y} z\right)}{(x+y+z)^{2}} \\
\frac{\partial f}{\partial y} & =\frac{\left(x^{2} e^{x}+x e^{y} z\right)(x+y+z)-\left(x^{2} e^{x} y+x e^{y} z\right)}{(x+y+z)^{2}} \\
\frac{\partial f}{\partial z} & =\frac{x e^{y}(x+y+z)-\left(x^{2} e^{x} y+x e^{y} z\right)}{(x+y+z)^{2}} \\
\left.\frac{\partial f}{\partial x}\right|_{(1,1,1)} & =\frac{(4 e)(3)-2 e}{3^{2}}=\frac{10 e}{9} \\
\left.\frac{\partial f}{\partial y}\right|_{(1,1,1)} & =\frac{(2 e)(3)-2 e}{3^{2}}=\frac{4 e}{9} \\
\left.\frac{\partial f}{\partial z}\right|_{(1,1,1)} & =\frac{3 e-2 e}{3^{2}}=\frac{e}{9}
\end{aligned}
$$

For the tangent plane we get

$$
\frac{10 e}{9}(x-1)+\frac{4 e}{9}(y-1)+\frac{e}{9}(z-1)
$$

and we could simplify this by dividing by $e / 9$ to get the equivalent equation

$$
10(x-1)+4(y-1)+(z-1)=0
$$

