2E1 (Timoney) Tutorial sheet 5

[Tutorials November 8 -9, 2006]

Name: Solutions

1. Find the partial derivatives with respect to x and y evaluated at $\left(x_{0}, y_{0}\right)=(2,-2)$ for

$$
f(x, y)=\frac{x \cos (\pi y)}{x^{2}+y^{2}}
$$

Solution:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\cos (\pi y)\left(x^{2}+y^{2}\right)-x \cos (\pi y)(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{\left(x^{2}+y^{2}-2 x^{2}\right) \cos (\pi y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{\left(y^{2}-x^{2}\right) \cos (\pi y)}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial f}{\partial y} & =\frac{-\pi x \sin (\pi y)\left(x^{2}+y^{2}\right)-x \cos (\pi y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-\pi x\left(x^{2}+y^{2}\right) \sin (\pi y)-2 x y \cos (\pi y)}{\left(x^{2}+y^{2}\right)^{2}} \\
\left.\frac{\partial f}{\partial x}\right|_{(2,-2)} & =0 \\
\left.\frac{\partial f}{\partial y}\right|_{(2,-2)} & =\frac{0+8}{8^{2}}=\frac{1}{8}
\end{aligned}
$$

2. Find the directional derivatives $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ for the same function $f(x, y)$ as in the previous problem, the same point $\left(x_{0}, y_{0}\right)$, and $\mathbf{u}=\left(u_{1}, u_{2}\right)$ any unit vector.

Solution: We know

$$
D_{\mathbf{u}} f=\frac{\partial f}{\partial x} u_{1}+\frac{\partial f}{\partial y} u_{2}
$$

and so, evaluating at $\left(x_{0}, y_{0}\right)=(2,-2)$

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=D_{\mathbf{u}} f(2,-2)=0 u_{1}+\frac{1}{8} u_{2}=\frac{u_{2}}{8}
$$

3. For the same $f(x, y)$, the same $\left(x_{0}, y_{0}\right)$ and the corresponding point $\left(x_{0}, y_{0}, z_{0}\right)$ on the graph $z=f(x, y)$, find parametric equations for the line which is tangent to the graph at $\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to the x-axis.

Solution: The line will be tangent to the curve where the graph $z=f(x, y)$ intersects the plane $x=x_{0}$, and so tangent to the curve

$$
\begin{aligned}
x & =x_{0} \\
y & =y_{0}+t \\
z & =f\left(x_{0}, y_{0}+t\right)
\end{aligned}
$$

at $t=0$. The tangent vector to that curve is

$$
\left(0,1,\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}\right)=(0,1,1 / 8) .
$$

So the line is

$$
\begin{aligned}
x & =x_{0} \\
y & =y_{0}+t \\
z & =z_{0}+t(1 / 16)
\end{aligned}
$$

and $z_{0}=f\left(x_{0}, y_{0}\right)=\frac{2(1)}{4+4}=1 / 4$. Thus the answer is

$$
\begin{aligned}
x & =2 \\
y & =-2+t \\
z & =\frac{1}{4}+\frac{t}{8} .
\end{aligned}
$$

The left hand graph shows $z=f(x, y)$ cut away at $(2,-2)$ (the x scale runs 0 to 4 , and the y from -4 to 4$)$. The right graph shows a part of $z=f(x, y)$ with the tangent line we computed.

Richard M. Timoney

