2E1 (Timoney) Tutorial sheet 4

[Tutorials November 1-2, 2006]
Name: Solutions

1. Find cartesian equations for the line

$$
\begin{aligned}
& x_{1}=3+2 t \\
& x_{2}=3-2 t \\
& x_{3}=1+3 t .
\end{aligned}
$$

Solution: Solving each of the 3 equatiosn for t we get

$$
t=\frac{x_{1}-3}{2}, \quad t=\frac{x_{2}-3}{-2}, \quad t=\frac{x_{3}-1}{3}
$$

and the caretesian equations are

$$
\frac{x_{1}-3}{2}=\frac{x_{2}-3}{-2}=\frac{x_{3}-1}{3}
$$

(One casn use (x, y, z) in place of $\left(x_{1}, x_{2}, x_{3}\right)$ for the corrdinates.)
2. Find parametric equations for the line of intersection of the two planes

$$
\begin{array}{r}
2 x-3 y+4 z=0 \\
-x+y+2 z=3
\end{array}
$$

Solution: The normal vectors to the planes are $(2,-3,4)$ and $(-1,1,2)$. Thus the line is perpendicular to both vectors, or parallel to their cross product.

$$
\begin{aligned}
(2,-3,4) \times(-1,1,2) & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -3 & 4 \\
-1 & 1 & 2
\end{array}\right) \\
& =\mathbf{i} \operatorname{det}\left(\begin{array}{cc}
-3 & 4 \\
1 & 2
\end{array}\right)-\mathbf{j} \operatorname{det}\left(\begin{array}{cc}
2 & 4 \\
-1 & 2
\end{array}\right)+\mathbf{k} \operatorname{det}\left(\begin{array}{cc}
2 & -3 \\
-1 & 1
\end{array}\right) \\
& =-10 \mathbf{i}-8 \mathbf{j}-\mathbf{k} \\
& =(-10,-8,-1)
\end{aligned}
$$

To get a point on the line we can try for a point with $z=0$ and this means solving the system of equations

$$
\begin{aligned}
2 x-3 y & =0 \\
-x+y & =3
\end{aligned}
$$

We see $y=2 x / 3$ from the first equation and then the second says $-x+2 x / 3=3$, or $-x / 3=3$ or $x=-9$. And then $y=-6$. So the point $(9,6,0)$ is on the line of intersection.

Armed with a point $\mathbf{a}=(-9,-6,0)$ and a vector $\mathbf{b}=(-10,-8,-1)$ parallel to the line, we can write parametric equations:

$$
\begin{aligned}
x & =-9-10 t \\
y & =-6-8 t \\
z & =0-t .
\end{aligned}
$$

3. Find parametric equations for the line in \mathbb{R}^{3} that is perpendicular to the plane

$$
-5 x-y+z=11
$$

and contains the point $(1,0,2)$.
Solution: A vector normal to the plane is $(-5,-1,1)$ and, since we know the point $(1,0,2)$ we can write down the equations

$$
\begin{aligned}
& x=1-5 t \\
& y=0-t \\
& z=2+t .
\end{aligned}
$$

