2E1 (Timoney) Tutorial sheet 3

[Tutorials October 25 -26, 2006]
Name: Solutions

1. Find the equation of the plane through $(1,2,5)$ perpendicular to the line

$$
\begin{aligned}
& x_{1}=3+2 t \\
& x_{2}=3-2 t \\
& x_{3}=1
\end{aligned}
$$

Solution: A vector parallel to the line is $(2,-2,0)$ and this is then normal to the plane. So the plane has equation $2 x_{1}-2 x_{2}=c$ (or $2 x-2 y=c$ if you prefer) for some constant c.
As $\left(x_{1}, x_{2}, x_{3}\right)=(1,2,5)$ is on the plane we have to have $2-4=c$ or $c=-2$ and the equation is $2 x_{1}-2 x_{2}=-2$ (or $x_{1}-x_{2}=-1$).
2. Find the equation of the plane in \mathbb{R}^{3} that contains the 3 points $(1,2,3),(4,5,6)$ and $(1,5,7)$. Solution: The differences

$$
(4,5,6)-(1,2,3)=(3,3,3) \text { and }(1,5,7)-(1,2,3)=(0,3,4)
$$

are in the plane (or parallel to the plane). So the cross product of these two vectors is normal to the plane

$$
\begin{aligned}
(3,3,3) \times(0,3,4) & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 3 & 3 \\
0 & 3 & 4
\end{array}\right) \\
& =\mathbf{i} \operatorname{det}\left(\begin{array}{cc}
3 & 3 \\
3 & 4
\end{array}\right)-\mathbf{j} \operatorname{det}\left(\begin{array}{ll}
3 & 3 \\
0 & 4
\end{array}\right)+\mathbf{k} \operatorname{det}\left(\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right) \\
& =3 \mathbf{i}-12 \mathbf{j}+9 \mathbf{k} \\
& =(3,-12,9)=3(1,-4,3)
\end{aligned}
$$

So the plane will have an equation of the form $x_{1}-4 x_{2}+3 x_{3}=c($ or $x-4 y+3 z=c)$ for some c. Plugging in one of the three points we find c. Taking $(1,2,3)$ we get $1-8+9=c$ or $c=2$. So the equation is $x_{1}-4 x_{2}+3 x_{3}=2$.
(It is reassuring the check that the other two points $(4,5,6)$ and $(1,5,7)$ also satisfy this equation.)
3. Give an example of a function $f(x, y)$ so that its graph lies on the sphere $(x-2)^{2}+(y-$ $1)^{2}+(z+3)^{2}=2$ (of radius $\sqrt{2}$ about $(2,1,-3)$). Give also the domain for your example function $f(x, y)$.

Solution: The points on the graph $z=f(x, y)$ must satify $(x-2)^{2}+(y-1)^{2}+(z+3)^{2}=2$, and we can go about solving this equation for z in terms of $f(x, y)$. We get

$$
\begin{aligned}
(z+3)^{2} & =2-(x-2)^{2}-(y-1)^{2} \\
z+3 & = \pm \sqrt{2-(x-2)^{2}-(y-1)^{2}} \\
z & =-3 \pm \sqrt{2-(x-2)^{2}-(y-1)^{2}}
\end{aligned}
$$

Since a function can only have one value at any point of its domain, we could choose, say,

$$
f(x, y)=-3+\sqrt{2-(x-2)^{2}-(y-1)^{2}}
$$

and this is ok as long as we are taking the square root of a nonnegative quantity.
So we restrict (x, y) to satisfy $(x-2)^{2}+(y-1)^{2} \leq 2$, which is the circle of radius $\sqrt{2}$ and center $(2,1)$ in the plane togther with the inside of the circle. We could take this set as the domain of $f(x, y)$ and then we have a good definition of a function f.

