2E1 (Timoney) Tutorial sheet 12

[Tutorials January 24 - 25, 2007]
Name: Solutions

1. Evaluate

$$
\int_{0}^{3} \int_{y=0}^{y=\sqrt{3} x} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x
$$

by making a change of variables to polar coordinates. [Hint: Sketch the region first. Then do the $d r$ integral first, before $d \theta$.]
Solution: This iterated integral is the same (by Fubini's theorem) as the double integral

$$
\iint_{R} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y
$$

where R is the triangle in the plane bounded by the x-axis, the line $x=3$ and the line $y=\sqrt{3} x$.

The limit $x=3$ is $r \cos \theta=3$ or $r=3 / \cos \theta$ and the angle is $\pi / 3$ (because $\tan (\pi / 3)=$ $\sqrt{3}$).

Changing this integral to polar coordinates, and remembering that $d x d y=r d r d \theta$, we get

$$
\begin{aligned}
\int_{\theta=0}^{\theta=\pi / 3}\left(\int_{r=0}^{r=3 / \cos \theta} \frac{1}{r} r d r\right) d \theta & =\int_{\theta=0}^{\theta=\pi / 3}[r]_{r=0}^{r=3 / \cos \theta} d \theta \\
& =\int_{\theta=0}^{\theta=\pi / 3} \frac{3}{\cos \theta} d \theta \\
& =\int_{\theta=0}^{\theta=\pi / 3} 3 \sec \theta d \theta \\
& =[3 \ln |\sec \theta+\tan \theta|]_{0}^{\pi / 3} \\
& =3 \ln (2+\sqrt{3})
\end{aligned}
$$

2. Find the mass of a solid object occupying the region in space bounded by the coordinate planes and the plane $x+y+z=2$ if its density function is $\delta(x, y, z)=x^{2}$. [Hint: Caluculations are easier if you leave the $d x$ integral to last.]
Solution: We know that the answer is

$$
\text { Mass }=\iiint d m=\iiint \delta(x, y, z) d x d y d z
$$

with the triple integral extending over the object.
That gives

$$
\begin{aligned}
& \int_{x=0}^{2}\left(\int_{y=0}^{2-x}\left(\int_{z=0}^{z=2-x-y} x^{2} d z\right) d y\right) d x \\
&=\int_{x=0}^{2}\left(\int_{y=0}^{2-z}\left[x^{2} z\right]_{z=0}^{z=2-x-y} d x\right) d y \\
&=\int_{x=0}^{2}\left(\int_{y=0}^{2-x} x^{2}(2-x-y) d y\right) d x \\
&=\int_{x=0}^{2}\left[x^{2}\left((2-x) y-y^{2} / 2\right)\right]_{y=0}^{2-x} d x \\
&=\int_{x=0}^{2} x^{2}\left((2-x)^{2}-(2-x)^{2} / 2\right)-0 d x \\
&=\int_{x=0}^{2} x^{2}(2-x)^{2} / 2 d x=\frac{1}{2} \int_{x=0}^{2} x^{2}\left(4-4 x+x^{2}\right) d x \\
&=\frac{1}{2} \int_{x=0}^{2} 4 x^{2}-4 x^{3}+x^{4} d x \\
&=\frac{1}{2}\left[(4 / 3) x^{3}-x^{4}+x^{5} / 5\right]_{x=0}^{2} \\
&=\frac{1}{2}\left(\frac{32}{3}-16+\frac{32}{5}-0\right)=\frac{8}{15}
\end{aligned}
$$

Richard M. Timoney

