PRACTICE EXAMINATION SOLUTIONS

1. Find a basis for the row space, the column space, and the nullspace of the following matrix A. Find rank A and nullity A. Verify that every vector in the row space of A is orthogonal to every vector in the nullspace of A.

$$
A=\left[\begin{array}{rrrrr}
1 & -1 & 7 & 3 & 4 \\
1 & -1 & 2 & 3 & 1 \\
-2 & 2 & 1 & -6 & 1 \\
0 & 4 & 16 & 0 & 8
\end{array}\right]
$$

Reduce A, getting the 4×5 matrix

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 3 & -3 / 5 \\
0 & 1 & 0 & 0 & -2 / 5 \\
0 & 0 & 1 & 0 & 3 / 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The row space has as basis the three non-zero rows of the reduced matrix, i.e. $\{(1,0,0,3,-3 / 5)$, $(0,1,0,0,-2 / 5),(0,0,1,0,3 / 5)\}$. The column space has basis the first three columns of the original matrix A, since the "first one's" of the reduced matrix appear in these columns: $\{(1,1,-2,0),(-1,-1,2,4),(7,2,1,16)\}$. For the nullspace, using the reduced matrix, we see that x_{4} and x_{5} are arbitrary, and that $x_{1}=-3 x_{4}+3 / 5 x_{5}, x_{2}=2 / 5 x_{5}$, and $x_{3}=-3 / 5 x_{5}$. Thus, the nullspace consists of all vectors in \mathbb{R}^{5} of the form $\left(-3 x_{4}+3 / 5 x_{5}, 2 / 5 x_{5},-3 / 5 x_{5}, x_{4}, x_{5}\right)$, which we write as all vectors of the form $x_{4}(-3,0,0,1,0)+x_{5}(3 / 5,2 / 5,-3 / 5,0,1)$. In other words, a basis for the nullspace is $\{(-3,0,0,1,0),(3 / 5,2 / 5,-3 / 5,0,1)\}$. The rank of A is 3 and the nullity of A is 2 ; note that Rank $A+$ Nullity $A=5$. Finally, to verify that every vector in the row space is orthogonal to every vector in the nullspace, it is enough to check the basis vectors. So, there are 6 things to check, since there are 3 vectors in the basis of the row space and 2 vectors in the basis for the nullspace. Checking the first one: $(1,0,0,3,-3 / 5) \cdot(-3,0,0,1,0)=0$. The other 5 verifications are left to you.
2.(a). Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.

Find an orthogonal matrix P which diagonalizes A. Using this or otherwise, calculate A^{8}.
(b). Let A be a symmetric matrix, and let λ and μ be two, distinct eigenvalues of A. Let x be an eigenvector of A corresponding to λ and let y be an eigenvector of A corresponding to μ. Prove that $x \perp y$.
(a). The first step is to find the eigenvalues of A. So, solving $\operatorname{det}(A-\lambda I)=$

$$
\operatorname{det}\left(\begin{array}{rrr}
2-\lambda & 1 & 1 \\
1 & 2-\lambda & 1 \\
1 & 1 & 2-\lambda
\end{array}\right)=0
$$

we get three roots $\lambda=1, \lambda=1, \lambda=4$ (i.e. 1 is a double root).
The second step is to find the corresponding eigenvectors. Our goal is to find two perpendicular eigenvectors, each of length 1, corresponding to $\lambda=1$, and a third eigenvector, of length 1 , corresponding to $\lambda=4$ which is to be perpendicular to the first two. For $\lambda=1$, we therefore consider $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$, obtaining the reduced form $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, which yields the general solution $\left(-x_{2}-x_{3}, x_{2}, x_{3}\right)$, where x_{2} and x_{3} are arbitrary. Letting $x_{2}=1$ and $x_{3}=0$, we get $u_{1}=(-1,1,0)$ as an eigenvector. Then, letting $x_{2}=0$ and $x_{3}=1$, we get $u_{2}=(-1,0,1)$ as another eigenvector. Note however, that neither u_{1} nor u_{2} has length 1 ; moreover, u_{1} is not orthogonal to u_{2}. So, we must apply the Gram-Schmidt process:

Let $v_{1}=u_{1} /\left\|u_{1}\right\|$, obtaining $v_{1}=(-1 / \sqrt{2}, 1 / \sqrt{2}, 0)$. Then, take

$$
v_{2}=\frac{u_{2}-<u_{2}, v_{1}>v_{1}}{\left\|u_{2}-<u_{2}, v_{1}>v_{1}\right\|}
$$

obtaining $v_{2}=(-1 / \sqrt{6},-1 / \sqrt{6}, 2 / \sqrt{6})$. (Verify that both v_{1} and v_{2} are unit vectors, that they are both eigenvectors corresponding to $\lambda=1$, and finally that $v_{1} \perp v_{2}$.)

Now, we find the third eigenvector corresponding to $\lambda=4$. So, to reduce the matrix $\left(\begin{array}{rrr}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right)$. We obtain the matrix $\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$. Solving, we get x_{3} is arbitrary, $x_{1}=x_{2}=x_{3}$. Thus, for example, $u_{3}=(1,1,1)$ is an eigenvector. However, we need to normalise u_{3}, i.e. make it have length 1 . So, the vector we seek is $u_{3} /\left\|u_{3}\right\|=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$.

Therefore the orthogonal matrix we seek is

$$
P=\left(\begin{array}{rrr}
-1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right)
$$

The point of all of this: For this P, we have

$$
P^{T} A P=D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Thus, $A=P D P^{T}$, so that $A^{8}=P D^{8} P^{T}=P\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{8}\end{array}\right) P^{T}$.
(b). $\lambda<x, y\rangle=\langle\lambda x, y\rangle=\langle A x, y\rangle=\left\langle x, A^{T} y\right\rangle=\langle x, A y\rangle$, since A is symmetric, $=\langle x, \mu y\rangle=\mu\langle x, y\rangle$. Therefore, $(\lambda-\mu)\langle x, y\rangle=0$. Now, we are given that $\lambda \neq \mu$. Thus, $<x, y\rangle$ must be 0 , i.e. $x \perp y$.
3. In each case, either explain why the set S in question is a vector space and find a basis and dimension of S, or explain why S is not a vector space.
(a). $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: 2 x_{1}+x_{3}-x_{4}=0\right.$ and $\left.x_{1}-x_{3}-2 x_{4}=0\right\}$.
(b). $S=$ all 4×4 matrices which are anti-symmetric. (Recall that A is anti-symmetric means that $A^{T}=-A$.)
(c). $S=$ all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(0)=1$.
$\operatorname{Part}(\mathbf{a})$. Since S is a subset of the vector space \mathbb{R}^{4}, we need only show that if ($x_{1}, x_{2}, x_{3}, x_{4}$) and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ are both in S and c is a scalar then their sum $\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, x_{4}+y_{4}\right)$ and the scalar product $\left(c x_{1}, c x_{2}, c x_{3}, c x_{4}\right)$ are both in S as well. For example, to verify the second condition, $2\left(c x_{1}\right)+\left(c x_{3}\right)-\left(c x_{4}\right)=c\left(2 x_{1}+x_{3}-x_{4}\right)=c \cdot 0=0$ and $\left(c x_{1}\right)-\left(c x_{3}\right)-2\left(c x_{4}\right)=$ $c\left(x_{1}-x_{3}-2 x_{4}\right)=c \cdot 0=0$. The verification of the first condition is just as simple.

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}:\left[\begin{array}{rrrr}
2 & 0 & 1 & -1 \\
1 & 0 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .\right.
$$

Reducing, we get $\left[\begin{array}{rrrr}1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1\end{array}\right]$, from which the solution $\left(x_{4}, x_{2},-x_{4}, x_{4}\right)=x_{2}(0,1,0,0)+$ $x_{4}(1,0,-1,1)$ is obtained. Thus, a basis for S consists of the two vectors $(0,1,0,0),(1,0,-1,1)$. $\operatorname{dim} S=2$.

Part (b). We argue as in part (a). Here, S is a subset of the vector space of all 4×4 matrices, and so we must only verify that if A and B are anti-symmetric and c is a scalar, then $A+B$ and $c A$ are also anti-symmetric. For example, $(A+B)^{T}=A^{T}+B^{T}=(-A)+(-B)=-(A+B)$. Similarly, one shows that $(c A)^{T}=-(c A)$.

Any 4×4 anti-symmetric matrix A is of the form

$$
A=\left[\begin{array}{rrrr}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{array}\right]
$$

which we can write as a sum of 6 matrices

$$
A=a_{12}\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+a_{13}\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+\ldots+a_{34}\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Since it is easy to see that these six matrices are linearly independent, they form a basis for S, whose dimension is 6 .

Part (c). Note that if f and g are in S, then $f^{\prime}(0)=g^{\prime}(0)=1$. However, $(f+g)^{\prime}(0)=2 \neq 1$. Hence S is not a vector space.
4. Let V be a vector space, and let $\left\{v_{1}, \ldots, v_{k}\right\} \subset V$.
(a). Define the term $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.
(b). Prove: If $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a linearly independent set, then so is $\left\{v_{1}, v_{2}, v_{3}\right\}$.
(c). Find all $k \in \mathbb{R}$ such that the set $\left\{(1,2,3),(0,-2,1),\left(1, k^{2}, 3 k-1\right)\right\}$ is linearly independent. Interpret geometrically.

Part (a). The set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent means that the only possible solution c_{1}, \ldots, c_{k} to the equation $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}=0$ is $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.

Part (b). Suppose that $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a linearly independent set, and let us show that the subset $\left\{v_{1}, v_{2}, v_{3}\right\}$ is also linearly independent. So, consider the equation $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=$ 0 . If $\left\{v_{1}, v_{2}, v_{3}\right\}$ were not linearly independent (i.e. if it were linearly dependent) then there would be a solution where not all the c_{1}, c_{2}, c_{3} were 0 . Then, if we were to set $c_{4}=0$ and $c_{5}=0$, there would be a solution to the equation $c_{1} v_{1}+\ldots+c_{5} v_{5}=0$ where not all the $c^{\prime} s$ are zero. But, this contradicts our assumption that $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a linearly independent.

Part (c). The set of $k \in \mathbb{R}$ such that the set $\left\{(1,2,3),(0,-2,1),\left(1, k^{2}, 3 k-1\right)\right\}$ is linearly
independent is the same as the set of $k \in \mathbb{R}$ such that $\operatorname{det}\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & -2 & 1 \\ 1 & k^{2} & 3 k-1\end{array}\right) \neq 0$. Solving $k^{2}+6 k-10=0$, we get $k=-3 \pm \sqrt{19}$. Thus, for all other $k,\left\{(1,2,3),(0,-2,1),\left(1, k^{2}, 3 k-1\right)\right\}$ is linearly independent. The geometric interpretation is that if $k=-3 \pm \sqrt{19}$, then the three vectors $\left\{(1,2,3),(0,-2,1),\left(1, k^{2}, 3 k-1\right)\right\}$ lie on the same plane (and hence they are not linearly independent). For all other values of $k,\left\{(1,2,3),(0,-2,1),\left(1, k^{2}, 3 k-1\right)\right\}$ are not co-planar.
5. In each case, either diagonalise the matrix or explain why the matrix cannot be diagonalised. (a). $A=\left(\begin{array}{rr}-3 & 2 \\ 0 & -3\end{array}\right) . \quad$ (b). $A=\left(\begin{array}{rrr}9 & -9 & 0 \\ 8 & -8 & 0 \\ -14 & 14 & 0\end{array}\right)$.

Part (a). It is easy to see that the only eigenvalue of A is the double root $\lambda=-3$. Now, reducing the matrix $\left(\begin{array}{rr}-3-\lambda & 2 \\ 0 & -3-\lambda\end{array}\right)$ with $\lambda=-3$, we get the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Thus, we get as eigenvector any vector of the form $\left(x_{1}, 0\right)$. However, there is not a set of two linearly independent eigenvectors corresponding to this double root. Hence, the matrix is not diagonalisable.

Part (b). First, the eigenvalues of A are obtained, as usual, by solving $\operatorname{det}(A-\lambda I)=0$. That is, one must solve the cubic $\lambda^{2}(\lambda-1)=0$.
Second, let's find two-if possible-linearly independent eigenvectors corresponding to the double root $\lambda=0$: We get x_{2} and x_{3} are arbitrary, and $x_{1}=x_{2}$. Thus, there are indeed 2 linearly indendent eigenvectors, $(1,1,0),(0,0,1)$. Corresponding to $\lambda=1$, we find a third eigenvector $(-9,-8,14)$. Thus, if we take $P=\left(\begin{array}{ccc}1 & 0 & -9 \\ 1 & 0 & -8 \\ 0 & 1 & 14\end{array}\right)$, then $P^{-1} A P$ will be the diagonal matrix $D=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
6. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined as rotation by an angle θ and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the projection onto the x-axis.
(a). Find the standard matrices corresponding to S and T.
(b). Find the real eigenvalues, if any, of S and of T. Interpret your answers geometrically.
(c). Determine whether $S \circ T=T \circ S$.
$\operatorname{Part}(\mathbf{a}) . S \leftrightarrow\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, and $T \leftrightarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
$\operatorname{Part}(\mathbf{b}) . \quad S$ has no real eigenvalues, unless θ is a multiple of π. The geometric reason is that a rotation will not take a vector into a multiple of itself (unless the rotation is through a very special angle of 0 or $\pm \pi$ or $\pm 2 \pi$ or ...).
T has eigenvalues 0 and 1 , with corresponding eigenvectors $(1,0)$ and $(0,1)$, respectively. Note that T takes $(1,0)$ to 1 times itself, while T takes $(0,1)$ to 0 times itself.
Part (c). $S \circ T$ is (almost) never equal to $T \circ S$. One way to see this is to simply multiply the two matrices $S \cdot T$ and $T \cdot S$, and verify that the resulting products are indeed different. Another way is to realise that, geometrically, $T \circ S\left(x_{1}, x_{2}\right)$ is always a vector on the x-axis. On the other hand, $S \circ T\left(x_{1}, x_{2}\right)$ does not lie on the x - axis (unless the angle of rotation θ is a multiple of π. can be any vector in \mathbb{R}^{2}. So the two compositions, $S \circ T$ and $T \circ S$, are different.

