Linear Algebra 2S2 PRACTICE EXAMINATION SOLUTIONS

1. Find a basis for the row space, the column space, and the nullspace of the following matrix A. Find rank A and nullity A. Verify that every vector in the row space of A is orthogonal to every vector in the nullspace of A.

$$A = \begin{bmatrix} 1 & -1 & 7 & 3 & 4 \\ 1 & -1 & 2 & 3 & 1 \\ -2 & 2 & 1 & -6 & 1 \\ 0 & 4 & 16 & 0 & 8 \end{bmatrix}.$$

Reduce A, getting the 4×5 matrix

The row space has as basis the three non-zero rows of the reduced matrix, i.e. $\{(1, 0, 0, 3, -3/5), (0, 1, 0, 0, -2/5), (0, 0, 1, 0, 3/5)\}$. The column space has basis the first three columns of the original matrix A, since the "first one's" of the reduced matrix appear in these columns: $\{(1, 1, -2, 0), (-1, -1, 2, 4), (7, 2, 1, 16)\}$. For the nullspace, using the reduced matrix, we see that x_4 and x_5 are arbitrary, and that $x_1 = -3x_4 + 3/5 x_5, x_2 = 2/5 x_5$, and $x_3 = -3/5x_5$. Thus, the nullspace consists of all vectors in \mathbb{R}^5 of the form $(-3x_4 + 3/5 x_5, 2/5 x_5, -3/5 x_5, x_4, x_5)$, which we write as all vectors of the form $x_4(-3, 0, 0, 1, 0) + x_5(3/5, 2/5, -3/5, 0, 1)$. In other words, a basis for the nullspace is $\{(-3, 0, 0, 1, 0), (3/5, 2/5, -3/5, 0, 1)\}$. The rank of A is 3 and the nullity of A is 2; note that Rank A+ Nullity A = 5. Finally, to verify that every vector in the row space is orthogonal to every vector in the nullspace, it is enough to check the basis vectors. So, there are 6 things to check, since there are 3 vectors in the basis of the row space and 2 vectors in the basis for the nullspace. Checking the first one: $(1, 0, 0, 3, -3/5) \cdot (-3, 0, 0, 1, 0) = 0$. The other 5 verifications are left to you.

2.(a). Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
.

Find an orthogonal matrix P which diagonalizes A. Using this or otherwise, calculate A^8 .

(b). Let A be a symmetric matrix, and let λ and μ be two, distinct eigenvalues of A. Let x be an eigenvector of A corresponding to λ and let y be an eigenvector of A corresponding to μ . Prove that $x \perp y$.

(a). The first step is to find the eigenvalues of A. So, solving $det(A - \lambda I) =$

$$\det \left(\begin{array}{ccc} 2-\lambda & 1 & 1\\ 1 & 2-\lambda & 1\\ 1 & 1 & 2-\lambda \end{array} \right) = 0,$$

we get three roots $\lambda = 1, \lambda = 1, \lambda = 4$ (i.e. 1 is a *double* root).

The second step is to find the corresponding eigenvectors. Our goal is to find two perpendicular eigenvectors, each of length 1, corresponding to $\lambda = 1$, and a third eigenvector, of length 1, corresponding to $\lambda = 4$ which is to be perpendicular to the first two. For $\lambda = 1$, we therefore $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, obtaining the reduced form $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, which yields the general solution $(-x_2 - x_3, x_2, x_3)$, where x_2 and x_3 are arbitrary. Letting $x_2 = 1$ and $x_3 = 0$, we get $u_1 = (-1, 1, 0)$ as an eigenvector. Then, letting $x_2 = 0$ and $x_3 = 1$, we get $u_2 = (-1, 0, 1)$ as another eigenvector. Note however, that neither u_1 nor u_2 has length 1; moreover, u_1 is not orthogonal to u_2 . So, we must apply the Gram-Schmidt process:

Let
$$v_1 = u_1/||u_1||$$
, obtaining $v_1 = (-1/\sqrt{2}, 1/\sqrt{2}, 0)$. Then, take

$$v_2 = \frac{u_2 - \langle u_2, v_1 \rangle v_1}{||u_2 - \langle u_2, v_1 \rangle v_1||},$$

obtaining $v_2 = (-1/\sqrt{6}, -1/\sqrt{6}, 2/\sqrt{6})$. (Verify that both v_1 and v_2 are unit vectors, that they are both eigenvectors corresponding to $\lambda = 1$, and finally that $v_1 \perp v_2$.)

Now, we find the third eigenvector corresponding to $\lambda = 4$. So, to reduce the matrix $\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$. We obtain the matrix $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$. Solving, we get x_3 is arbitrary, $x_1 = x_2 = x_3$. Thus, for example, $u_3 = (1, 1, 1)$ is an eigenvector. However, we need to normalise u_3 , i.e. make it have length 1. So, the vector we seek is $u_3/||u_3|| = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$.

Therefore the orthogonal matrix we seek is

$$P = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$$

The point of all of this: For this P, we have

$$P^T A P = D = \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4 \end{array}\right).$$

Thus, $A = PDP^T$, so that $A^8 = PD^8P^T = P\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4^8 \end{pmatrix} P^T$.

(b). $\lambda < x, y \rangle = \langle \lambda x, y \rangle = \langle Ax, y \rangle = \langle x, A^T y \rangle = \langle x, Ay \rangle$, since A is symmetric, = $\langle x, \mu y \rangle = \mu < x, y \rangle$. Therefore, $(\lambda - \mu) < x, y \rangle = 0$. Now, we are given that $\lambda \neq \mu$. Thus, $\langle x, y \rangle$ must be 0, i.e. $x \perp y$.

3. In each case, either explain why the set S in question is a vector space and find a basis and dimension of S, or explain why S is not a vector space.

(a). $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_3 - x_4 = 0 \text{ and } x_1 - x_3 - 2x_4 = 0\}.$

(b). $S = all \ 4 \times 4$ matrices which are anti-symmetric. (Recall that A is anti-symmetric means that $A^T = -A$.)

(c). $S = all functions f : \mathbb{R} \to \mathbb{R}$ such that f'(0) = 1.

Part(a). Since S is a subset of the vector space \mathbb{R}^4 , we need only show that if (x_1, x_2, x_3, x_4) and (y_1, y_2, y_3, y_4) are both in S and c is a scalar then their sum $(x_1 + y_1, x_2 + y_2, x_3 + y_3, x_4 + y_4)$ and the scalar product (cx_1, cx_2, cx_3, cx_4) are both in S as well. For example, to verify the second condition, $2(cx_1) + (cx_3) - (cx_4) = c(2x_1 + x_3 - x_4) = c \cdot 0 = 0$ and $(cx_1) - (cx_3) - 2(cx_4) = c(x_1 - x_3 - 2x_4) = c \cdot 0 = 0$. The verification of the first condition is just as simple.

$$S = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \begin{bmatrix} 2 & 0 & 1 & -1 \\ 1 & 0 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Reducing, we get $\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$, from which the solution $(x_4, x_2, -x_4, x_4) = x_2(0, 1, 0, 0) + x_4(1, 0, -1, 1)$ is obtained. Thus, a basis for S consists of the two vectors (0, 1, 0, 0), (1, 0, -1, 1). dim S = 2.

Part (b). We argue as in part (a). Here, S is a subset of the vector space of all 4×4 matrices, and so we must only verify that if A and B are anti-symmetric and c is a scalar, then A + B and cA are also anti-symmetric. For example, $(A + B)^T = A^T + B^T = (-A) + (-B) = -(A + B)$. Similarly, one shows that $(cA)^T = -(cA)$.

Any 4×4 anti-symmetric matrix A is of the form

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} \\ -a_{12} & 0 & a_{23} & a_{24} \\ -a_{13} & -a_{23} & 0 & a_{34} \\ -a_{14} & -a_{24} & -a_{34} & 0 \end{bmatrix}$$

which we can write as a sum of 6 matrices

Since it is easy to see that these six matrices are linearly independent, they form a basis for S, whose dimension is 6.

Part (c). Note that if f and g are in S, then f'(0) = g'(0) = 1. However, $(f+g)'(0) = 2 \neq 1$. Hence S is not a vector space.

4. Let V be a vector space, and let $\{v_1, ..., v_k\} \subset V$.

(a). Define the term $\{v_1, ..., v_k\}$ is linearly independent.

(b). Prove: If $\{v_1, v_2, v_3, v_4, v_5\}$ is a linearly independent set, then so is $\{v_1, v_2, v_3\}$.

(c). Find all $k \in \mathbb{R}$ such that the set $\{(1,2,3), (0,-2,1), (1,k^2,3k-1)\}$ is linearly independent. Interpret geometrically.

Part (a). The set of vectors $\{v_1, ..., v_k\}$ is *linearly independent* means that the only possible solution $c_1, ..., c_k$ to the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$ is $c_1 = 0, c_2 = 0, ..., c_k = 0$.

Part (b). Suppose that $\{v_1, v_2, v_3, v_4, v_5\}$ is a linearly independent set, and let us show that the subset $\{v_1, v_2, v_3\}$ is also linearly independent. So, consider the equation $c_1v_1 + c_2v_2 + c_3v_3 =$ 0. If $\{v_1, v_2, v_3\}$ were not linearly independent (i.e. if it were linearly dependent) then there would be a solution where not all the c_1, c_2, c_3 were 0. Then, if we were to set $c_4 = 0$ and $c_5 = 0$, there would be a solution to the equation $c_1v_1 + \ldots + c_5v_5 = 0$ where not all the c's are zero. But, this contradicts our assumption that $\{v_1, v_2, v_3, v_4, v_5\}$ is a linearly independent.

Part (c). The set of $k \in \mathbb{R}$ such that the set $\{(1,2,3), (0,-2,1), (1,k^2,3k-1)\}$ is linearly

independent is the same as the set of $k \in \mathbb{R}$ such that det $\begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ 1 & k^2 & 3k-1 \end{pmatrix} \neq 0$. Solving $k^2 + 6k - 10 = 0$, we get $k = -3 \pm \sqrt{19}$. Thus, for all other k, $\{(1, 2, 3), (0, -2, 1), (1, k^2, 3k-1)\}$ is linearly independent. The geometric interpretation is that if $k = -3 \pm \sqrt{19}$, then the three vectors $\{(1, 2, 3), (0, -2, 1), (1, k^2, 3k-1)\}$ lie on the same plane (and hence they are not linearly independent). For all other values of k, $\{(1, 2, 3), (0, -2, 1), (1, k^2, 3k-1)\}$ are not co-planar.

5. In each case, either diagonalise the matrix or explain why the matrix cannot be diagonalised.

(a).
$$A = \begin{pmatrix} -3 & 2 \\ 0 & -3 \end{pmatrix}$$
. (b). $A = \begin{pmatrix} 9 & -9 & 0 \\ 8 & -8 & 0 \\ -14 & 14 & 0 \end{pmatrix}$.

Part (a). It is easy to see that the only eigenvalue of A is the *double root* $\lambda = -3$. Now, reducing the matrix $\begin{pmatrix} -3 - \lambda & 2 \\ 0 & -3 - \lambda \end{pmatrix}$ with $\lambda = -3$, we get the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Thus, we get as eigenvector any vector of the form $(x_1, 0)$. However, there is not a set of *two* linearly independent eigenvectors corresponding to this double root. Hence, the matrix is not diagonalisable.

Part (b). First, the eigenvalues of A are obtained, as usual, by solving $det(A - \lambda I) = 0$. That is, one must solve the cubic $\lambda^2(\lambda - 1) = 0$.

Second, let's find two-if possible-linearly independent eigenvectors corresponding to the double root $\lambda = 0$: We get x_2 and x_3 are arbitrary, and $x_1 = x_2$. Thus, there are indeed 2 linearly indendent eigenvectors, (1, 1, 0), (0, 0, 1). Corresponding to $\lambda = 1$, we find a third eigenvector (-9, -8, 14). Thus, if we take $P = \begin{pmatrix} 1 & 0 & -9 \\ 1 & 0 & -8 \\ 0 & 1 & 14 \end{pmatrix}$, then $P^{-1}AP$ will be the diagonal matrix $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

6. Let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be defined as rotation by an angle θ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the projection onto the x-axis.

- (a). Find the standard matrices corresponding to S and T.
- (b). Find the real eigenvalues, if any, of S and of T. Interpret your answers geometrically.
- (c). Determine whether $S \circ T = T \circ S$.

Part(a). $S \leftrightarrow \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, and $T \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Part(b). S has no real eigenvalues, unless θ is a multiple of π . The geometric reason is that a rotation will not take a vector into a multiple of itself (unless the rotation is through a very special angle of 0 or $\pm \pi$ or $\pm 2\pi$ or ...).

T has eigenvalues 0 and 1, with corresponding eigenvectors (1,0) and (0,1), respectively. Note that T takes (1,0) to 1 times itself, while T takes (0,1) to 0 times itself.

Part (c). $S \circ T$ is (almost) never equal to $T \circ S$. One way to see this is to simply multiply the two matrices $S \cdot T$ and $T \cdot S$, and verify that the resulting products are indeed different. Another way is to realise that, geometrically, $T \circ S(x_1, x_2)$ is always a vector on the x-axis. On the other hand, $S \circ T(x_1, x_2)$ does not lie on the x- axis (unless the angle of rotation θ is a multiple of π . can be any vector in \mathbb{R}^2 . So the two compositions, $S \circ T$ and $T \circ S$, are different.