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Abstract

An approach to computing two point correlator functions for a Lattice QCD theory is dis-
cussed. Several kernels for use with a CUDA compatible GPU are proposed along with an
implementation for these correlation functions. The multiplication kernels documented here
show an increase in FLOPS over the CUBLAS CGEMM routine of up to 35%. A tracing
kernel is proposed that improves upon a simple dot product approach by potentially two
orders of magnitude, as regards FLOPS, by reorganizing several traces with common data
into matrix multiplications.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Lattice QCD

Due to the strength of interaction of the strong force at long distances, perturbative models
are not appropriate. Lattice QCD is an approach to solving problems of quarks and gluons
non-perturbatively|4]. A lattice of space-time is defined, where quarks are placed on lattice
sites and gluons on the connections between them. A discretized action is used to describe
the field theory on the lattice, such that when the lattice spacing a — 0, it produces a
continuum action.

As a non-perturbative theory, lattice QCD is capable of producing exact results from
first principles, dealing directly with the path integral formalism. In practice, however, the
accuracy of the theory is limited by computational power. As the lattice spacing decreases,
the computational power required to perform a calculation increases. Rather than using

brute force approaches, more subtle approaches are normally used.

The Two Point Correlator Function

The correlator function as defined[4, p 215]
Cij = (0:05) (1.1)

can be used to find the mass of particles. We’re particularly interested in meson correlator
functions. This function can be written in the form of the trace of four matrices multiplied

together, so the problem can be passed to a computer to be calculated.



Cy(d) =3 Tr [@i(t +0) T(t+6,¢) ®I(t) 7(t,t + 5)] (1.2)

We'll be looking here to find an efficient (and more importantly, fast) way of doing this on
a GPU. Some things need to be taken into account to determine whether or not this is worth
it. As it turns out, given the number of flops to perform and the amount of information

actually passed to the card, it certainly is worth it.

1.1.2 The Parallel Paradigm

As a rule, computers tend to follow Moore’s law, named after Intel’s Gordon E. Moore, who
said[5]:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year... Certainly over the short term this rate can
be expected to continue, if not to increase. Over the longer term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will not
remain nearly constant for at least 10 years. That means by 1975, the number
of components per integrated circuit for minimum cost will be 65,000. 1 believe

that such a large circuit can be built on a single wafer.

However, we are quickly reaching the limits of this prediction|[8]. A reasonable goal is now
to find other ways of speeding programs up than simply building faster processors. This is
where the parallel paradigm comes in.

One of the approaches to computing problems involving large numbers of operations is
parallel programming. A parallel program is one that is split into multiple parts and each
part run simultaneously, working together to produce some end result. As such, to solve a
problem in a parallel fashion, it is necessary to express it in a manner that can be parallelized.

As one might imagine, if a program can be split perfectly into two parts and run on two
processors simultaneously, it should finish in half the time. In general though, one can’t fully
parallelize a program, so some of it must execute in a serial manner. If a fraction P of a
code can be fully parallelized and run on N processors, by Amdahl’s Law|2|, the maximum

speedup of the program, S, over the serial code is given by

1
- 1.3
(I-P)+% 13
In parallel processors, each processor works independently of the others. Specifics of

memory access and caching is different from processor to processor. Often it is necessary to



write an algorithm quite differently for one family of parallel processors than for another.
There are certain problems much more suited to parallel programming than others. A
parallel program should be capable of being split into multiple sections that each run inde-
pendent of each other. However, there is often some overlap necessary in the computations.
Some sections may require the results of some others. In this case, one goal is to reduce
the frequency of these occurrences through some clever trickery and structuring of the pro-
gram, or to move these synchronizing events to a section where the particular processor the

program is being run on allows for it.

1.2 General Purpose GPU

With gaming these days, and general demand in the market for more and more powerful
GPU cards, they’re becoming more powerful and cheaper as time goes on[3, p 21|. Before
any kind of low level API was offered, some people tried to trick GPUs into doing what
they wanted. The use of a GPU for applications other than graphics processing is known
as GPGPU[3, p 7. GPU manufacturers used to just give APIs for doing pixel shadings or
rotations, or other graphics related operations. Some of these can be used to manipulate
other matrices in other ways.

Recently, however, NVIDIA has opened up the GPU API to developers to do with the
card as they wish. This is being taken up for scientific applications by many groups. We
wish to do the same. Using this, it is possible to easily get somewhere around an order of
magnitude or two speed increase from a program on a desktop computer|3, p 10]. With this,
it may be possible to do calculations that would previously have had to be done on a cluster.

Normally, a cluster is shared by several groups. Often there are queues to use the clusters.
Often, there are time limits on overall computation time imposed on groups. By moving
some of these jobs to the group’s personal computers, they can avoid this queue and avoid
using their computation time. Before, it would have been unfeasible to run some of these
programs on desktop computers. Further, clusters can be quite expensive. Rather than
purchasing a cluster, or paying for time on other clusters, a single NVIDIA Tesla C1060
GPU (on which the tests in this paper were conducted) can, at the time of writing, be
bought for about €1000 (or on eBay for about €400!) whereas the TCHPC cost around
€500,000[1]. The difference in pricing here speaks for itself. In fact, a cluster of Tesla cards
can be purchased for somewhere on the order of €60,000, which is a much more accessible

figure for small groups.



Chapter 2

NVIDIA GPU Architecture

2.1 Thread Hierarchy

A thread is a set of instructions to be run in some order|7, p 7]. In our case, a thread
is a single instance of a kernel running with some particular set of ids associated with it.
Threads are organized into blocks and then from blocks into grids. When a kernel is run, it
generates a grid of blocks, each with a particular block id. Blocks are placed onto streaming
multiprocessors on the card as evenly as possible for execution until there are no blocks left.

Each block has a local block of memory called shared memory that can be accessed by
all threads within that block, but only by threads within that block. This memory has much
lower access latency than global memory, and as there are potentially much fewer threads
trying to access it, it has potentially much higher bandwidth per thread.

Threads within blocks run somewhat independently of each other. Threads are organized
into warps, each of size 32 threads. Each thread in the same warp issues an instruction into
the pipeline at the same time, however, they do not require the instructions to execute at the
same time. This is important for memory access considerations. In cases where coalescing
or bank conflicts are taken into consideration, one generally considers simultaneous access
by threads in the same warp, because memory tends to serve threads of the same warp
simultaneously.

Where a kernel requires some synchronization barrier, it is usually best to organize the
algorithm such that only threads within the same block need to be synchronized. This is
because blocks cannot speak with each other, save for using some piece of global memory as

a flag, say. It is usually best to avoid global memory accesses as much as possible.



2.1.1 Identification

When executing a kernel on the Host, execution parameters are defined, including the di-
mensions of the grid and the blocks|7, p 9]. This is done by passing a value of type dim3, a
type provided by CUDA, with the extent of each dimension (up to 3 dimensions for blocks,
but only 2 for grids. Any dimension not specified defaults to 1). So, say a kernel is launched

as
kernel<<<dim3(a,b), dim3(c,d,e)>>>(float *M)

when inside the kernel, if one queries blockIdx.x, it will return a value between 0 and a-1.
Similarly, blockIdx.y returns a value between 0 and b-1. When querying threadIdx.x it
will return between 0 and c-1. Similarly for .y and .z. Each thread has a unique combination
of blockIdx and threadIdx, and each value is visited.

When a kernel is launched, initially, it attempts to place blocks of increasing blockIdx.x
onto the SM, followed by blockIdx.y, but as the calculation progresses, it is not guaranteed
that blocks are executing in order. In general, it is best not to rely on anything to run in
order.

When a block is running, it will group threads into warps. Threads are assigned to warps
first in increasing threadIdx.x, then threadIdx.y and finally threadIdx.z. Using this
knowledge, it is possible to determine which threads will issue instructions simultaneously,
so it should be possible to organize an algorithm to avoid any nasty warp level effects like

warp serialization or branch divergence.

2.2 Memory Hierarchy

There are several other types of memory that will not be covered in this paper, but we will
at least cover what was actually used.

There are 2 main levels of memory to consider: Host memory and Device memory|7,
p 10]. Device memory is then split into 3 levels: Global memory, shared memory and
register memory. These are listed in order of decreasing latency and increasing bandwidth
per thread, or more generally, in order of closeness to an executing thread|7, p 84|. It is
usually a good idea to store frequently used memory as close to the thread as possible.
However, as storage gets closer to the thread, more and more restrictions and performance

considerations come into play.



2.2.1 Global and Local Memory

Global memory tends to have a large storage space as it is stored off-chip, typically on the
order of MBs or GBs. However, latency of access is around 400 to 800 clock cycles|7, p 85],
and bandwidth is typically around 100 GB/s|3, p 78| on high end cards.

Local memory is stored in the same place, so it has the same qualities|7, p 89|. Local
memory is used if the compiler considers a thread to be using too many registers. An
SM has a limited number of registers that it must share among threads|7, p 80]. If each
thread requests too many registers, the number of threads an SM can service is lowered, so
it may be more advantageous to move some of these registers to local memory and hope
occupancy is high enough to hide access latency to this memory, and also hope that local
memory bandwidth isn’t the bottleneck of a kernel, or that is has, at least, been reduced to

a reasonable level.

2.2.2 Shared Memory

Shared memory has much reduced capacity, a maximum of 16 KBJ[7, p 148|, but considering
each block potentially requires this much memory independent of other blocks, it’s hardly
surprising it’s somewhat small since a streaming multiprocessor must allocate this much
memory to every block currently executing on it. Latency to this memory depends on your
specific hardware, but it is orders of magnitude lower than global memory. The bandwidth
is 32 bits per 2 clock cycles per bank|7, p 152].

To increase parallel access to shared memory, it is partitioned into 16 banks for cards of
compute capability 1.x or 32 banks for compute capability 2.x, each of which can issue data
to different threads in a warp simultaneously. In the case that all threads in a half-warp
(for compute capability 1.x) or a whole warp access the same memory address, the bank
can broadcast that data to all threads in the warp simultaneously. Data is organized in
the banks such that successive 32 bit words (ie, an int or a float is of size 32 bits) are in
successive memory banks. Therefore, in a half warp for compute capability 1.x or a whole
warp for compute capability 2.x, if an array of floats is indexed by threadldx.x with an odd
stride (eg 1), each thread will access a different bank|6, p 31|. If, however, there is an even
stride, some threads will attempt to access different words in the same bank simultaneously.
In this case, warp serialization occurs, where the bank serializes the request, and services
the request of each querying thread one by one. Each bank does this independently of the

others, but this can slow a kernel down considerably.



2.3 Hardware

A CUDA card is comprised of a salable number of streaming multiprocessors (SM)[7, p 79|.
Blocks are placed on SMs to be executed. The SM then organizes the threads of a block
into warps to be scheduled for execution. Each streaming multiprocessor has a number of 32
bit registers and a parallel data cache. The registers are divided up among the active warps
and are the registers used by each thread of the warp. The parallel data cache is divided
up among the blocks running on the SM as their shared memory. As the registers of a warp
remain on the chip, there is no performance penalty for swapping one warp, which may be
waiting on some data or some some other operation for example, for another to be executed.
The hardware does this regularly enough, and so it is impossible to determine in exactly
what order the threads of a kernel will execute. The SM is the primary reason for threads
to be organized into warps and blocks.

As a block finishes execution, another block is placed onto the SM in its place. For cards
of compute capability 1.x, only one kernel can be executed at a time, so the amount of work
that can be done in parallel on a card is limited to the amount of blocks a kernel launches.
For compute capability 2.x, kernels can be simultaneously executed. For these reasons, it is
good to have kernels which launch many blocks, whose dimension is a multiple of the warp
size, not use too much shared memory, and use as few registers as possible. It is often, also,
a good idea to fuse multiple kernels into one large one, enumerating which kernel run you’re
currently dealing with using one dimension in blockIdx. This way, there will be many active
warps on the card, so as one is waiting for data, the latency of that access can be completely
hidden by the execution of another warp.

The maximum number of blocks that can be placed on an SM at any one time, and
hence the maximum number of resident warps on an SM, is determined by which condition
is first met (all specific to each card): the maximum number of threads allowed per SM,
the maximum number of blocks allowed per SM, the maximum amount of shared memory
per SM. Similarly, the maximum number of resident warps will be affected by this and the
number of registers used by each thread, as there are a finite amount on the SM. Specific
numbers are not really important, only that they exist, and this sort of thing should be
considered in optimizations.

The card runs in an architecture known as SIMT. This is similar to SIMD vector pro-
cessors, except it is not necessary for an algorithm to be vectorized. Threads in a warp are
run simultaneously on the SM and instructions are pipelined. This is one of the reasons why
warps can be swapped around for execution on the SM.

It is worth noting that unlike a CPU, there is no branch prediction or speculative execu-



tion, so it is worth vectorizing an algorithm, at least to warp granularity.

2.4 The CUDA Programming Language

The CUDA programming language is the low level APT that NVIDIA has provided to devel-
opers to write programs to be run explicitly on their GPUs[3, p 21|[7, p 18]. It is designed to
be a simple extension to C (it actually compiles as C++, however only C style programming
and very simple C++ may be used to write kernels run on the GPU), so programmers will
be familiar with most of the programming model. After a short introduction, it should be
possible for a programmer to immediately write a kernel to be run on a CUDA enabled GPU.

The main pieces added to C are functionalities to define code that is to run on the Host
(the CPU controlling the GPU) and the Device (the GPU on which the kernel is executed).
In device code, there are further specifications as to where particular pointers are mapped:
global, local, shared and register memory. It then provides functions for defining different
types of memory, for allocating memory to them, for transferring memory, and also for device
synchronizations, as appropriate.

To run a piece of code on a CUDA enabled GPU, a function called a kernel is written.
within this kernel, the programmer is free to define shared memory to be shared between
threads in a particular block, local registers for each thread, and then whatever function
the programmer wants to write. Inside the kernel, however, the programmer is limited to
functions declared to be capable of running on the device. In general, if a function is not
declared explicitly to run on the device, then it won’t. This means certain handy classes,
such as the vector class etc, or any classes the programmer might have written without being
careful of avoiding these classes won’t work on the card. One of the main reasons for this
is that it is not easy to dynamically allocate memory within a kernel. And if memory is

allocated and the programmer is not careful, it can have some serious performance impacts.

2.5  Performance Considerations

When writing a kernel, there are multiple potential pitfalls to consider. They will be listed

here with some solutions suggested. Some can be completely avoided, others only minimized.

2.5.1 Bandwidth

Each stage of memory transfer has a certain bandwidth associated with it. This is generally

one of the biggest bottlenecks in a kernel and is definitely worth tackling first.



Coalescing When a request is coalesced, only one set of data needs to be sent|6, p 20|. The
minimum amount of data that can be queried and sent to a warp is 32 bytes. So, if a
data request asks for less than 32 bytes, or goes outside of a 32 byte word boundary
unnecessarily, extra elements will be sent to that warp, while only some of them will
be kept and used. It is therefore more desirable to request only those elements that
will be used, requiring data requests to be coalesced. When data is to be queried from
global memory, the programmer should try to have each thread in a warp access a

useful element, and have all elements queried in the same word.

Storage Hierarchy Bandwidth to a thread increases as the storage area gets closer to the
chip. Bandwidth between the host and global memory is lower than between global
memory and a thread. Similarly, global memory to thread bandwidth is lower than
shared memory to thread bandwidth. Finally, the highest bandwidth is for thread reg-
isters. By storing as much memory as close to the chip as possible, effective bandwidth
can be reduced. One must be careful, however, as each area of storage has different

restrictions, and they usually become more restrictive as one gets closer to the chip.

Overall Requests In the case of matrix multiplication, each element in each matrix to be
multiplied is called n times, where n is the width of the matrix. Repeat calling from
global memory can be reduced dramatically, compared to a naive algorithm, by using
a tiling algorithm. This involves each thread block copying an m x m tile from global
memory to shared memory, to be used by all the threads in a block. It can be shown

that an m x m tile reduces global memory requests by a factor m|3, p 24]|7, p 18|.

2.5.2 Latency

Any piece of memory queried has a certain latency associated with it. That is, a certain
amount of clock cycles before a memory bank is even ready to start sending some memory.
There are several methods of dealing with latency. They are listed here in some kind of

order.

Coalescing By requesting data that resides in the same 32 or 128 byte words, only one
request must be made per word. So, by ordering data requests so they reside entirely
in blocks of these words, much fewer requests are made, and so much lower overall

latency is involved in these requests.

Occupancy By having a large number of resident warps to be run, while one warp is waiting

for a piece of memory due to latency, another warp can run|6, p 39|. If that warp has



already issued a request and had previously been waiting for some memory due to

latency, it can now run. By having enough resident warps, latency can be well hidden.

Storage Hierarchy In all cases, it is best to keep as much memory as close to the chip
as possible, while simultaneously avoiding nasty effects such as register spilling. The
closer storage is to a thread, the lower its latency. In the case where a certain piece
of memory is used quite often, it might be a good idea to store it in a register or in

shared memory.

Prefetching By requesting the memory needed for the next loop iteration in a looping
statement while the current iteration is proceeding, an entire iteration’s worth of cal-
culations can be run before the requested memory is needed|3, p 113]. This can be
done because of the SIMT architecture of the CUDA core, meaning the same instruc-
tion is issued at the same time for each thread in a warp, but each instruction need
not execute at the same time, and each individual thread is independent in this sense.
Since this calculation takes time, the latency for the memory access can be hidden in
these operations. This works because the card doesn’t actually wait for the memory to
arrive until it is required for some calculation. In this case, the memory isn’t needed

until the next iteration of the loop.

2.5.3 Overhead

In some cases, thread overhead can be somewhat large. There are some things each thread
must compute before it can begin. In some cases a calculation can be organized such that
several threads can be combined into one thread in such a way that only one awkward
calculation needs to be done at the start of the thread and the numbers that would have
been calculated for the other threads are at a simple offset from the first thread.

Care must be taken that this is not overused, because what was once a parallel program
can quickly become a serial one. The optimum number for this is often quite small.

Kernel launch overhead can also be large|3, p 187|, so in the case where a kernel is run
multiple times, if the kernel launches can be parallelized, it can be a good idea to merge
several launches into the one kernel. By passing the appropriate data and enumerating

kernels using one of the blockIdx, this can be a very simple improvement to implement.

2.5.4 Calculation Reduction

It is often desirable to reduce the actual number of operations performed by a thread. There

are a few ways of approaching this.
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Loop Unrolling The nvee compiler provides a #pragma unroll option|7, p 95]. This will
write out a loop explicitly, inserting a number where the iterator would have been for
each iteration. This reduces both the number of registers required by a thread and
also the number of calculations needed to be done by the thread. In the case of some
conditional statement depending on the iterator, these can be computed explicitly by
the compiler, further reducing the number of calculations performed. If the loop to be
unrolled would be too long, causing too much code expansion, the compiler returns a

warning to that effect.

Load Spreading In the case where some numbers computed by several threads need to be
added together, one solution is to write these to shared memory and have thread 0
do all the adding. Another option, to reduce the load on thread 0, is to do some sort
of shared summation. It can be set up that each thread writes their value to shared
memory, and then for some loop running an appropriate length, the first half of the
thread block add their value and the next half’s value and writes it back to shared
memory, then the first quarter read theirs and the second quarter’s values etc until
there is only 1 thread left. Using threads in this manner falls within the general idea of
parallel programming, so it should come as no surprise that it is preferred to perform
these sorts of calculations in a parallel manner if possible. However, the lazy "make

thread 0 do everything" approach is handy for debugging.

2.5.5 Serialization

One must be careful to access memory banks in a parallelizable manner|6, p 26]. Both global
and shared memory is divided into banks of memory. When a warp is accessing a memory
bank, the accesses must be organized such that each thread in the warp accesses either the
same word in a bank as another thread, or a different bank altogether. In the case two
threads access two different words in the same bank, the request must be serialized into two
conflict free requests. So instead of one transaction occurring, two transactions must occur,
and the second one must wait for the first to complete before proceeding. This reduces access
speed and should be avoided.

One must also be aware of branch divergence|7, p 95]. In the case where there is some
control flow in a kernel, one should try to have every thread in the same warp follow the
same path. For each different path followed by threads in a warp, the warp must be passed
through the SM for execution during the divergence. So, in the case where threads in a warp
diverge down two paths for some duration, this section must be executed twice, once for

each path, thus increasing the overall execution time of the warp.
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2.5.6 Instructions

For some operations, there exist several different possibilities for their execution|6, p 46]. By
selecting the appropriate operation, it may be possible to speed a program up (or slow it
down!). For example, on the card, there exists a fused multiply-add operation (FMAD) which
computes a multiplication and addition in one operation, rather than the usual two. However,
for devices of compute capability 1.x, it is not IEEE-754 compliant. After performing the
multiplication, the result is simply truncated rather than rounded when put into the sum.
Therefore, it is possible a kernel might return a result that differs from some serial CPU
code. There are multiplication and addition operators that can be used to specify explicit
multiplications and explicit additions, to avoid the compiler optimizing a multiply-add into
a FMAD.

There exist circumstances where speed is more important than accuracy, and CUDA cards
provide for this. There are some operations such as sin() and cos() that have alternate
versions __sin() and __cos() which map directly to the hardware, and hence take much

fewer clock cycles to compute, but they're less accurate. Worse, they’re only somewhat

accurate within a certain range of the argument.
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Chapter 3

Formulating The Correlation Functions

3.1 Energy Eigenvalues

Given the correlator|4, p 215]
Cij(6) = (0] ®,(8)@}(0) |0) (3.1)
Switching to the Heisenberg picture yields

Ci5(0) = (0] /0@, HoeH0PTe =10 |0) (3.2)
= (0] D¢~ |0) (3.3)

Inserting a complete set of states, we get

Cii(0) = > (0] @3(0)e™" [n) (n| ®1(0) [0) (3-4)
=" (01 ®i(0) |n) ¢~ (n] 1(0) |0) (3.5)
We now label
(0[@;(0) [n) = Z; (3.6)
(n| ®(0) |0) = Z], (3.7)
St 0 = D, () (3.8)

D, is a matrix whose diagonal elements are the energy eigenvalues of the inserted states,

and all other elements are 0.

13



We may now rewrite the correlator in the matrix form

Cij(0) = ZinDui(0) Z}, (3.9)
C(0) = ZD(0)Z! (3.10)
= Z(Z1(ZNY YD) 2 (3.11)
Since ZZT = C(0), we have
C(6) = C(0)(ZNH) D)2} (3.12)

Now, (Z)~1D(6)Z" has the same eigenvalues as D(8), which are \,(0) = e % so we get

the generalized eigenvalue equation

C(0)T, = C(0)(Zz"*D(6) 2", (3.13)
= C(0)\,(0)0, (3.14)
= C(0)e g, (3.15)
Thus, the energy can be found:
E, =1log (M0)/A(d+1)) (3.16)

This simultaneously eliminates the difficulty in finding excitation values using correlators
and improves the signal to noise ratio. As one can see from here, if only one observable is
used, only 1 energy level, the ground energy, can be correctly determined. Further, it has
only been determined using one source of data. Generating is using more sources of data
should, therefore, improve the accuracy of each level found.

It remains to actually compute a correlator matrix.

3.2 Matrix Representation of the Correlator

We consider the correlation function|4, p 217]
C(t)=)_{0(1)0(0)) (3.17)

where O(t) is an observable that looks like a meson with some particular quantum numbers.

Specifically, some fermionic fields, 1 (¢) where the roman index denotes spin and the Greek

14



index denotes colour sandwiching some Dirac matrices, I';;

O(t) = B(Tw () (3.18)
Expanding, the correlator gives
C(t) = (01 F (£)Ti5 ()9 (0) Tty (0) |0) (3.19)
We define
(O 5 (1) (£2) [0) = G (11, 1) (3.20)
as it turns out|4, p 52,
G(ti,ta) = My, . (3.21)

where Mg, , is the fermion propagator.
Normal ordering, and remembering sign changes due to the use of Grassman variables

produces the result
C(t) = Tr[G(t, t)T] Tr [G(0,0)T] — Tr [G(t,0)['G(0, ¢)T] (3.22)

In the case of a flavour nonsinglet, the first term evaluates to zero|4, p 218, so finally we

have (dropping the minus sign)

O(t) = Tr [G(t, 0)0G(0, )T (3.23)
— Tv[DG(t,0)0G(0, 1)] (3.24)

We use a slightly modified version of this correlator

Cy(d) =3 T [(I)i(t + 8)G(t+ 6,1 (1)G(t,t +0) (3.25)

whose derivation follows similar steps. We perform the sum over ¢ because we are on a lattice
with periodic boundary conditions, so our choice of zero time is arbitrary. By doing this
summation, we effectively find an average value for the correlator over all possible starting
positions, improving our signal to noise without having to compute extra @ matrices.

A database of ® matrices and propagators have been computed prior to writing this

paper.
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Chapter 4

A GPU Based Implementation

Equation 3.25 leaves us with a linear algebra problem that we can tackle computationally.

The general outline we will take is as follows:

i(t+0) T(t+0,t) = X[ (t,0) (4.1)
ol(t) T(t,t +0) = XF(t,9) (4.2)
Cij(t,0) = Tr [X](t,6) X[(t,0)] (4.3)

tmax

Cij(6) = Cij(t, ) (4.4)

t=0

By using the relation for time reversal of propagators
T(t,t+6) =y Tt +d,t) 75 (4.5)

we can reduce the number of propagators that need to be loaded for each run. It is conceivable
that if two propagators are loaded that two elements of C;;(t,d) could be calculated, but it
is easier to keep track of just one. In the basis used for this calculation, a 75 multiplication
requires just one or two extra lines of code to implement, so it is essentially free.

We are now faced with performing two matrix multiplications and a trace of two matrices

to compute one time slice of the correlator matrix.

4.1 Operation Time vs Transfer Time

It must be determined whether or not it is worth performing this calculation on a GPU. As
there is quite a low bandwidth across the PCI bus, we must compare the time it takes to

move the elements from the host to the device and the number of calculations performed
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on the device. We define the Operation/Transfer ratio (O/T) as the number of operations
performed divided by the number of elements transferred. Assuming the time required for
each is roughly linearly dependent on these numbers, it’s a reasonable ratio to consider.
Assuming two ® matrices and one 7 matrix is uploaded for each calculation, and assuming
intermediate matrices are kept and/or summed on the card until the final C;;(d) is calculated

(so we will ignore this), we have for each time slice calculation:

Transfers: 3N?
Operations: 2N?3 + N?

giving us a O/T of ~ 2N. The O/T can be improved to ~ §N by calculating Cj;(t, d) along
with Cj;(t, d). It can be even further improved by loading multiple ®;s on to calculate other

C;; elements. Assuming C;; has a width ¢, we get

Transfers: (c+ 1)N?
Operations: (2¢)N? + (¢*)N?

and the O/T is ~ 2N + ¢. As can be seen, when ¢ ~ N, this becomes an N* operation.
With a general O/T of ~ N, this is certainly worth while calculating on the GPU. Compare
this to, say, a matrix addition which has an O/T of ~ 1, which does not justify the transfer
time.

For large N and large c, the transfer time pales in comparison to the operation time.

4.2 The Matrix Multiplication Kernels

Here, we will go through the iterative process of writing a basic kernel and then considering
the current bottlenecks and attempting to fix them.

For matrix multiplications, we will use, as our goal, the Flops count of the equivalent
CUBLAS operation, CGEMM.

Algorithm ‘ GFLOPS
CGEMM | 21945

4.2.1 The Naive Implementation

The naive multiplication kernel in Listing 4.1 suffers from some serious bottlenecks. Running

a comparison test results in the following table.
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void NaiveMultiply (const cuFloatComplex *A, const cuFloatComplex =B,
cuFloatComplex *C, int width)
{

const uint Row = blockldx.y«TILE WIDTH + threadIldx.y;
const uint Col = blockldx.x+TILE WIDTH + threadldx.x;

cuFloatComplex Xtmp = make cuFloatComplex (0,0) ;

for (int k=0; k<width; k++)

{
Xtmp = cuCaddf(
cuCmulf(
A[ Rowxwidth + k |,
B[ kxwidth + Col |
)
Xtmp );
}

3| C[Rowxwidth 4+ Col] = Xtmp;

}

Listing 4.1: Naive Matrix Multiplication Kernel

Algorithm | GFLOPS
CGEMM 219.45
Naive 34.09

As discussed in section 2.5.1, one of the most important things to tackle are coalescing
and overall throughput. Considering the C1060 has a total global bandwidth of 102.4 GB/s,
assuming we call complex floats of 8 bits for each matrix element, and assuming 2 elements
are needed for each floating point operation, we say we transfer 16 bits per 8 FLOPs (since
complex multiplication requires 8 operations: 4 multiplications and 4 additions). So, we
have a theoretical maximum of 102.4/16 = 6.4 complex multiplications per second which is
6.4x8 = 51.2 GFLOPS. This is around the 34.09 GFLOPS we see. Compare this to CGEMM
which reaches 200 GFLOPS. So, it is likely global memory bandwidth is the bottleneck we
need to tackle.

We introduce a tiled algorithm to take care of both coalescing and bandwidth.

4.2.2 The Basic Tiled Algorithm

As can be seen in Listing 4.2, the complexity significantly rises in this implementation,

however, the FLOPS show significant improvement.
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void SimpleTiledMultiply (const cuFloatComplex A, const cuFloatComplex
cuFloatComplex *C, int width)
{

const uint Row = blockldx.y«TILE WIDTH + threadIldx.y;
const uint Col blockldx .x+TILE WIDTH + threadIldx.x;

__shared  cuFloatComplex Ash[TILE WIDTH]|[TILE WIDTH] ;
__shared  cuFloatComplex Bsh[TILE WIDTH|[TILE WIDTH];

cuFloatComplex Xtmp = make cuFloatComplex (0,0);

#pragma unroll
for (int m=0; m<gridDim.x; mt+)
{
Ash[threadldx .y]|[threadldx.x] =
A[Rowxwidth + m«TILE WIDTH + threadldx.x];

Bsh|[threadldx.y][threadIdx.x] =
B[(m«TILE_WIDTH + threadIldx.y) *swidth + Col];

__syncthreads () ;

#pragma unroll
for (int k=0; k<TILE WIDTH; k++)

{
Xtmp = cuCaddf(
cuCmulf(
Ash[threadIldx.y][k],
Bsh[k][threadIdx .x]
Xtmp
)5
1
__syncthreads () ;
}
C[Rowsxwidth + Col| = Xtmp;
t

*B

Listing 4.2: Simple Tiled Matrix Multiplication Kernel
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Algorithm GFLOPS
CGEMM 219.45
Naive 34.09
Simple Tiled 177.71

This algorithm takes care of most of the bottlenecks a matrix multiplication algorithm
might encounter fairly well. The idea behind the algorithm is quite simple, but quite effective.

The resulting matrix is split up into tiles of width TILE_WIDTH, matching the dimensions
of the block, so now there are (width/TILE_WIDTH)? tiles to be calculated. A block of threads
collaborates to compute the elements of a tile, so individual blocks correspond directly to
individual tiles. The tile width is chosen such that the data needed to compute it can be
stored in a block’s shared memory, at least in an iterative manner.

Tiles are loaded from the left matrix in a manner traversing a row of the matrix while
tiles are loaded from the right matrix in a manner traversing a column. This looks much like
a matrix multiplication, where the elements of the matrix to be multiplied are, themselves,
matrices; i.e. the loaded tiles. As a tile can be stored in the shared memory of a block,
the matrix multiplication between these tiles can be carried out much quicker from shared
memory than it could have been otherwise. As stated in section 2.5.1, a tile of size m x m
reduces global memory requests by a factor of m.

By comparing the theoretical new speed, 34.09 x 16 = 545.44 GFLOPS to the actual new
speed, 177.71 GFLOPS, we can see that we got about an order of magnitude speedup, as we
would expect, but that there is still room for improvement.

Inspecting the output from the visual profiler that comes with the CUDA SDK, com-
puteprof, we see some interesting results. One is that our occupancy has gone from 1, in
the case of the naive kernel to 0.75. Since that profiler seems to count in chunks of 0.25, we
can’t come to too many conclusions based on this.

Another point is that our register count for the kernel has risen from 12 to 14, which is to
be expected with the introduction of two new pointers. This 14 is, however, the same number
that CUBLAS uses for its CGEMM routine, so we’ll assume this is an optimal amount. There
is some importance to this. There is a maximum number of threads, blocks and registers
that can be present on a particular streaming multiprocessor on the device. This means, if
one has too many registers in a thread, fewer threads will be able to run on the device. This
reduces the number of active warps available for the device. Hence the drop in occupancy
observed. However, this drop in occupancy is greatly outmatched by the increase in FLOPS.

Another noteworthy thing is the number of coalesced loads and stores. In the naive
kernel, there were high numbers of 32 byte and 128 byte loads and 128 byte stores. The
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appearance of 32 byte loads, in our case, indicates poor loading patterns, as it should be
possible to have only 128 byte loads. Indeed, the tiled algorithm achieves this with not only
entirely 128 byte loads, but an order of magnitude fewer loads, as expected. The number of
loads in this kernel is the same as the CGEMM kernel.

Finally, a point to note, a large difference between our kernel and the CGEMM kernel is
the warp serialization. Ours is on the order of 10,000, meaning 10,000 requests to shared
memory had to be serialized and executed sequentially. Compare this to the CGEMM kernel,

which is 0. Obviously, this is an entirely avoidable problem, so we should tackle this next.

4.2.3 Eliminating Warp Serialization

We must look at what happens when attempting to access the tile in shared memory
on a card of compute capability 1.x. If a 16 x 16 tile is stored in shared memory as
Ash[TILE_WIDTH] [TILE_WIDTH], when traversing the right bracket, the array goes across
memory banks. However, when traversing the left bracket, the array goes down the same
memory bank, since it jumps a length TILE_WIDTH each time, which is of size 16. The trick is
to pad the right index by 1 to Ash[TILE_WIDTH] [TILE_WIDTH+1]. So, now, when traversing
the right bracket, one moves across memory banks, and then traversing the left bracket, one
returns to the same memory bank plus 1, so one also moves across memory banks. Since the
extra 1 can effectively be ignored, the array appears and behaves exactly as before, except
the transpose of the array can also be accessed easily without warp serialization.

Further consideration must be made for complex numbers. In general, a stride in shared
memory across 32 bit words must be odd (ie, if indexing an array of floats by s*threadIdx.x,
s must be odd). This isn’t possible using a structure like cuFloatComplex which stores 2
floats side by side. What can be done, however, is to store the real and imaginary parts of
a number in different arrays, or in different sections of the same array. Here, we've declared
an array Ash[TILE_WIDTH] [2*TILE_WIDTH+1], so the real part can be kept in the first half
of the row and the complex part in the second half. The +1 here is to facilitate transpose

indexing. By making the change above, we find the following:

Algorithm GFLOPS
CGEMM 219.45
Naive 34.09
Simple Tiled 177.71
No Serialization 217.33

A 22% speed increase!As can be seen, this is now near the same speed as CGEMM.
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void TiledNoSerializationMultiply (const cuFloatComplex #A, const
cuFloatComplex B, cuFloatComplex xC, int width)
{

const uint Row = blockldx.y«TILE WIDTH + threadldx.y;
const uint Col = blockldx .x*TILE WIDTH + threadldx.x;

__shared ~ float Ash[TILE WIDTH|[2 «+TILE WIDTH +1];
__shared  float Bsh[TILE WIDTH|[2 «+TILE WIDTH +1];

cuFloatComplex Xtmp = make cuFloatComplex (0,0) ;

#pragma unroll
for (int m=0; m<gridDim .x; m++)

Ash[threadIldx.y][threadldx.x] =

cuCrealf (A[Rowxwidth + m«TILE WIDTH + threadldx.x]);
Ash[threadldx.y]|[threadldx.x +TILE_WIDTH| =

cuCimagf (A[Rowxwidth + m«TILE WIDTH + threadldx.x]);

Bsh|[threadldx.y][threadldx.x] =
cuCrealf (B[ (m+«TILE_WIDTH + threadldx.y) *width + Col]);
Bsh|threadIldx.y][threadldx.x +TILE_WIDTH] =
cuCimagf (B[ (m+TILE_WIDTH + threadIdx.y) *width + Col]) ;

__syncthreads () ;

#pragma unroll
for (int k=0; k<TILE_WIDTH; k++)
{
Xtmp = make cuFloatComplex (
cuCrealf (Xtmp) +
Ash[threadIdx.y][k]*Bsh[k][threadldx.x] —
Ash[threadldx.y][k +TILE WIDTH]| *Bsh|[k][threadIdx.x +TILE_WIDTH] ,

cuCimagf (Xtmp) +
Ash[threadldx.y ][k +TILE_WIDTH]| «*Bsh[k ][ threadIdx .x]| +
Ash[threadIldx.y][k]*Bsh[k][threadldx.x +TILE_WIDTH]

)5
}
__syncthreads () ;

}

C[Rowxwidth + Col] = Xtmp;
}

Listing 4.3: Tiled Matrix Multiplication Kernel Without Warp Serialization
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Looking to computeprof once again, there are two differences visible there. One is that this
kernel uses one fewer registers, but since the nvee compiler is somewhat fickle, we won’t make
a big deal of this. However, the number of instructions issued by each kernel is somewhat
interesting. CGEMM issues around 155540 instructions, while ours issues 156410, around
0.5% extra while the speed difference is around 1% worse. We should see if there are any
unnecessary operations being performed that we should only need to computed once, without

using any extra registers, since we'’re trying to keep them to a minimum.

4.2.4 Pointer Iteration

Such a seemingly trivial change puts us just past our goal.

Algorithm GFLOPS
CGEMM 219.45
Naive 34.09
Simple Tiled 17771
No Serialization 217.33
Pointer Iteration 222.67

Instead of having to do a bunch of multiplication and addition operations on each iteration
of the m loop, we’ve integrated the numbers that are always added in the same way into the
original pointer at the start of the kernel. Then, instead of having to calculate some shift
along the row or vector direction, it’s incorporated into the for loop. The row and col
variables have been left for reference in future edits.

As can be seen, this has a 1.5% speed improvement over the CGEMM routine, and the
computeprof output says it issues around 1-2% fewer instructions.

For the sake of curiosity, we’ll see what else we can do to improve our time.

4.2.5 Prefetching

Global prefetching requires a little upheaval of the kernel, but it is simple enough to follow.
The basic loop is|3, p 114]:

1. Load value queried from high latency from previous iteration into lower latency mem-

ory.
2. Query value from high latency memory to be used in next iteration.

3. Perform calculation using the values loaded into the lower latency memory.
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void PointerIterateMultiply (const cuFloatComplex =*A, const cuFloatComplex xB,
cuFloatComplex =*C, int width)
{

//const uint Row = blockIdx .y«TILE WIDTH + threadldx.y;
//const uint Col = blockldx .x«TILE WIDTH + threadldx .x;

A += (blockIdx .y«TILE_ WIDTH + threadldx.y) «width + threadldx.x;

B += threadldx.y*xwidth + (blockldx .x«TILE WIDTH + threadldx.x);

C += (blockldx.y«TILE WIDTH + threadldx.y) «xwidth + (blocklIdx .x«TILE WIDTH +
threadldx .x);

__shared__ float Ash[TILE_WIDTH][2 «TILE_WIDTH +1];
__shared__ float Bsh|[TILE_WIDTH]|[2 «TILE_WIDTH +1];

cuFloatComplex Xtmp = make cuFloatComplex (0,0);

#pragma unroll
for (int m=0; m<gridDim .x; mt+, A+=TILE_WIDTH, B+=TILE WIDTH xwidth)

Ash[threadldx .y]|[threadldx.x] =
cuCrealf (A[0]) ;
Ash|[threadldx.y]|[threadldx.x +TILE_WIDTH| =
cuCimagf (A[0]) ;

Bsh|[threadldx.y]|[threadldx.x] =
cuCrealf (B[0]) ;
Bsh|threadIldx.y|[threadldx .x +TILE _WIDTH] =
cuCimagf (B[0]) ;

__syncthreads () ;

#pragma unroll
for (int k=0; k<TILE_WIDTH; k++)
{
Xtmp = make cuFloatComplex(
cuCrealf (Xtmp) +
Ash[threadldx.y][k]|*Bsh[k][ threadldx.x]| —
Ash[threadldx.y][k +TILE_WIDTH] *Bsh [k][threadIdx .x +TILE_WIDTH] ,

cuCimagf (Xtmp) +
Ash[threadldx.y][k +TILE_WIDTH] «Bsh [k][threadIdx.x] +
Ash[threadldx.y][k]*Bsh[k][threadldx.x +TILE WIDTH]
)5
1

__syncthreads () ;

}

C[0] = Xtmp;

}

Listing 4.4: Tiled Matrix Multiplication Kernel Using Pointer Iteration
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This is particularly effective if step 3 is a long calculation.

The Oth element might be loaded into the query variable before the loop begins to avoid
any awkward conditional statements needing to be evaluated on each iteration. If the loop
is unfolded, it is possible the awkward conditional statements will be evaluated at compile
time, though. In some cases some pre-loop and post-loop operations will need to be done to
ensure the whole loop has been evaluated properly.

The kernel was a bit long to include here. An attempt was made to write a loop with
awkward conditional statements as described above to make it fit, but it seems the nvce
compiler wasn’t quite smart enough to evaluate them explicitly when the loop is unrolled,
resulting in them being evaluated on each iteration, and slowing the kernel down by about
7%. As aresult, it has been left an exercise for the reader. The resulting values for performing

a prefetch from global memory and a prefetch from local memory are as follows

Algorithm GFLOPS
CGEMM 219.45
Naive 34.09
Simple Tiled 177.71
No Serialization 217.33
Pointer Iteration 222.67
Global Prefetch 22417
Share Prefetch 210.71

As can be seen, a global memory prefetch offers a slight speed improvement, while a shared
memory prefetch is actually detrimental. The reason for the share prefetch being detrimental
is because of the extra operations needed to perform it, the extra registers needed to hold
the queried and more local values, and the fact that there’s not many operations between
loading each value from shared memory, so the latency can’t really be hidden.

The global memory prefetch offers only a marginal improvement because we already have
plenty of active warps waiting to perform calculations, so while one warp is waiting for some
data from global memory, another warp can be executed. The prefetch reduces the number
of warps needed to hide the latency of the global memory request, thus improving speed a
little.

4.2.6 Multiplication Fusion

Considering the task at hand, we have one propagator multiplied with several observables.

It might, therefore, be worthwhile multiplying multiple matrices with the same propagator
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in the same kernel. It is a simple extension to the previous kernels. Instead of just Ash
shared matrices, we have Alsh and A2sh shared matrices, pass two matrices, Al and A2, one
propagator matrix, B, along with two output matrices C1 and C2.

This was done for two, three and four matrices, with and without prefetching.

Algorithm GFLOPS
CGEMM 219.45
Naive 34.09
Simple Tiled 177.71
No Serialization 217.33
Pointer Iteration 222.67
Global Prefetch 22417
Share Prefetch 210.71
Double 240.65
Double Prefetch 256.29
Triple 228.42
Triple Prefetch 257.91
Quadruple Prefetch 240.21
Double Double Prefetch 269.22

A double multiplication should be loading 3 matrices from global memory rather than
4. This should offer an improvement of around 25%. Similarly, a triple multiplication and
quadruple should have an improvement of 33% and 37.5% respectively. This isn’t quite
reflected in the FLOPS though. While the double multiplication with prefetching offers
around 14% improvement over the Global Prefetch kernel, which is somewhat near to the
25% we’d expect, the triple and quadruple kernels don’t improve upon this, and in fact start
to decline in performance. This suggests that global bandwidth isn’t necessarily the greatest
bottleneck. With these kernels, register use is increased to around 20, and, according to
computeprof, the occupancy is around 50%. It is worth noting that an occupancy of around
50% can be sufficient to hide global access memory latency. Considering computeprof shows
no signs of poor coalescing or warp serialization, the problem is likely latency, bandwidth or
overhead related.

Returning to the double kernel, by creating a quadruple kernel by fusing two double
kernels, we get all the benefits of a double kernel with some of the overhead of the two
double kernels fused into one. So, as can be seen, with this sort of loop fusion, the double

double offers a 5% improvement over the single double kernel, a 12% improvement over the
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void VectorizedMultiply (const cuFloatComplex A, const cuFloatComplex *B,
cuFloatComplex *C, int width)
1

//const uint Row = ((blockIdx .x/(width/TILE WIDTH) )«TILE_WIDTH + threadIdx.y;
//const uint Col = ((blockIdx .x%(width/TILE WIDTH) ) «TILE_ WIDTH + threadIdx .x;

w

SN

6

1A += ((blockIdx .x/(width/TILE WIDTH) ) «TILE WIDTH + threadldx.y) *width +

threadldx.x + blockldx.y*width*width;

s|B += threadldx.y*width + ((blockIdx.x%(width/TILE WIDTH) ) «TILE_WIDTH +
threadldx .x) ;

C 4= ((blockldx.x/(width/TILE_WIDTH) ) «TILE_ WIDTH + threadldx.y) xwidth + ((
blockIdx .x%(width /TILE WIDTH) ) «TILE WIDTH + threadIdx.x) + blockldx.y
width*width ;

©

10
11| //some declarations
12
13|#pragma unroll

| for (int m—1; m<(width/TILE_WIDTH) ; m++)

15 {

16 //the rest of this loop
17 }

18| //the rest of this code
l‘J}

Listing 4.5: Fused Matrix Multiplication Kernel

regular quadruple kernel, and overall, a 20% improvement over the Global prefetch kernel,
or previously fastest single multiplication kernel.

As can be seen, double and triple etc matrix combining is well worth the effort. It is
surprising how much extra speed prefetching offers. It is likely prefetching relieves some of
the pressure on global memory, allowing the memory to be transferred any time between the
first and second matrix multiplications, along with reducing the number of resident warps
necessary to hide latency. There seems to be a peak around two and three multiplications,
which is fine, because most problems of this type involving more than one multiplication can
be decomposed into groups of two and three multiplications. The same effect can be seen
in the Quadruple and Double Double kernels. The Quadruple kernel is calling many more
elements simultaneously, but only 15% fewer elements overall, so it’s likely this bandwidth

clogging is a worse bottleneck than the number of elements passed.

Another Kind Of Fusion

We consider fusing multiple kernels into one kernel, such that instead of calling 2 x ¢ kernels,

we write one kernel that multiplies ¢ matrices together. In our case, we’ll only move across
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the left matrix, since we use the same propagator for all ¢ multiplications. Only a small

change is needed. The execution configuration changes from

FusedMultiply <<<dim3(width /TILE_ WIDTH, width /TILE_ WIDTH) , dim3(TILE_WIDTH,
TILE_WIDTH) (A,B,C, width)

to

FusedMultiply <<<dim3(width /TILE_ WIDTH xwidth /TILE_ WIDTH, c¢Width), dim3(
TILE_WIDTH, TILE_ WIDTH) (A,B,C, width)

and the change to the kernel is shown in Listing 4.5.

We write a kernel based on the global prefetch kernel as described before with the aug-
mentations described here. For ¢ = 1, it runs about 2% slower than the global prefetch
kernel, which is to be expected with the extra operations. For ¢ = 2, however, it already
runs faster than it by about 6%, which is fantastic.

We then also apply this thinking to our current leader, the double double multiplication

kernel. We compare the two, along with their unfused cousins running for ¢ = 64.

Algorithm GFLOPS
CGEMM 219.45
Global Prefetch 22417
Double Double Prefetch 269.22
Fused Multiply 266.58
Fused Double Double 298.278

These are some pretty decent results. In the end, we’ve managed to beat a CUBLAS
implementation by 35%)!

4.3 The Trace Kernels

4.3.1 The Single Trace

This trace kernel takes two matrices and computes the trace of the matrix you would find if
they were multiplied together.
The first loop gets each thread in a block to load some particular element of the two

matrices, multiplies them together and adds them to a stored the result. Next, all the
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threads in the block do a reduction, adding all the values together, being careful not to
reduce the amount of bank conflicts by storing real and imaginary parts far away from each
other, and by ordering the reduction so as to minimize the amount of branch conflicts within
the same warp.

This kernel reaches a pitiful speed.

Algorithm | GFLOPS
Single Trace | 5.6601

void SingleTrace(const cuFloatComplex *A, const cuFloatComplex =B,
cuFloatComplex *C, int width, int counter)

{

int tid = threadldx.y«TILE WIDTH + threadldx.x;

int tw2 = TILE WIDTH«TILE WIDTH;

slint In2tw2 = ffs(tw2) —1;

__shared__ float Bshp[2+TILE WIDTH+TILE_WIDTH+1];

cuFloatComplex A pre, B pre;
float Xtmp[2] = {0,0};

2|A 4= threadldx.yxwidth + threadldx.x;
3B 4= threadldx .xxwidth + threadldx.y;

5| float *Cf = (float x) C;

#pragma unroll
for (int i=blockldx.x; i<width/TILE_ WIDTH; i+=gridDim .x)
#pragma unroll
for (int j=blockldx.y; j<width/TILE WIDTH; j+=gridDim.y)
{
A pre = A[i«TILE WIDTH*xwidth + j«TILE WIDTH];
B _pre = B|j+«TILE WIDTHxwidth + i*TILE WIDTH]|;

?

xcuCrealf (B _pre
(
(
(

xcuCrealf (B _pre

Xtmp[0] += cuCrealf(A_pre )
Xtmp[0] —= cuCimagf(A pre) *cuCimagf(B_pre) ;
Xtmp[1] += cuCrealf( )
( )

xcuCimagf (B _pre);

7

e e N

A pre
Xtmp[1] += cuCimagf(A_pre
__syncthreads () ;

}

>

2|Bshp[tid] = Xtmp[0];
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5| Bshp [ tid+TILE._ WIDTH+TILE_WIDTH| = Xtmp|[1];

__syncthreads () ;

#pragma unroll
for(int 1=0; i<ln2tw2; i++)

{

tw2/=2;

Pf (tid<tw2)
{
Xtmp[0] += Bshp[tid+tw2];
Xtmp[1] += Bshp| tid tw2 TILE_WIDTH +TILE_WIDTH] ;
Bshp[tid] = Xtmp[O0];
Bshp [ tid +TILE_ WIDTH+TILE_ WIDTH| = Xtmp[1];
}

__syncthreads () ;

}

if (tid==0)
{

atomicFloatAdd (Cf, Xtmp[0] ); atomicFloatAdd(Cf+1, Xtmp[1] );
}

Listing 4.6: Single Tracing Kernel

4.3.2 A Tiled Trace

Traditionally, a trace of two matrices is an N? problem. This isn’t good for our us, since we
an N? operation has an O/T of order 1. What we would like is to somehow increase this
ratio.

As per 4.1, we calculate some right matrices and some left matrices, and find the trace
of their product. It is worth noting, however, that each matrix is used in more than one
calculation. Using this fact, it should be possible to find some way of reducing the number of
redundant loads, much like in the tiled matrix multiplication algorithm. Indeed, we propose
performing this trace operation much like a tiled matrix multiplication.

The trace of two matrices looks a lot like a dot product, but with some funny ordering of
the elements. If the left matrix is flattened as a row vector, with successive rows placed next

to each other, much like arrays are indexed in C, and flatten the right matrix is flattened
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like a column vector, with successive rows placed under each other, the operation is, in fact,
a dot product. To simplify things, we store the right vector in a transposed format, such
that, if both vectors are flattened with successive rows next to each other, any indexing and
coalescing problems vanish.

So, we now have a ¢ X ¢ matrix whose elements are found by finding the dot product
of two vectors of length N2. Much like a regular matrix multiplication, the same vectors
are used in calculating several elements, so a tiled algorithm now becomes a viable option.
However, we now experience some problems.

The algorithm we propose now suffers from potential bank conflicts. As such, for maxi-
mum efficiency, the width of the correlator matrix should be a multiple of 16, the number of
shared memory banks. This greatly increases pressure on the card. For a correlator of width
¢, we must hold 2 x ¢ observable operators (assuming they all depend on time), 1 propagator
and 2 x ¢ temporary matrices and the correlator matrix itself. It is assumed the correlator
matrix will always stay on the card, as it would be inefficient to continuously transfer bits
of it off the card.

What is nice about this algorithm, though, is it’s just a small change to the matrix
multiplication kernel. As the global prefetching kernel was too big for this report, we provide
the "Pointer Iteration" kernel from above, modified accordingly in Listing 4.7. This kernel
assumes the right matrix is stored in a complex transposed format, to allow for coalesced
loads.

For a 64 x 64 correlator matrix, and assuming 2 x 4 x ¢ x N? operations occur:

Algorithm GFLOPS
Single Trace 5.6601
Tiled Trace 41.83

This is about comparable to serial execution on the CPU. However, it may still be
worthwhile computing the correlators on the card to reduce the number of transfers across
the PCI bus. It is also unlikely that a CPU will actually reach this value in practice.

One reason this runs so slowly is because there is such a low number of blocks launched
for this kernel. For the 64 x 64 correlator, there are only 16 blocks launched, with each block
doing a large amount of work. For the matrix multiplication kernels above, there are around
256 blocks. NVIDIA recommends thousands of blocks be launched.

As usual, we also write a kernel with prefetching from global memory. The results are

much improved:
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void TiledTrace (const cuFloatComplex *A, const cuFloatComplex =B,
cuFloatComplex +C, int ABwidth, int Cwidth)
o

//const uint Row = blockIdx .y«TILE WIDTH + threadldx.y;
4| //const uint Col = blockldx .x+«TILE WIDTH + threadldx .x;

~

A += (blockIdx .y«TILE WIDTH + threadldx.y) *ABwidthxABwidth;

s|B += (blockldx .x«TILE_ WIDTH + threadIldx.y) *ABwidthxABwidth;

C 4= (blockldx.y«TILE WIDTH + threadldx.y) «Cwidth + (blockIdx .x«TILE WIDTH +
threadldx .x);

©

11| __shared  float Ash[TILE WIDTH][2 «TILE_ WIDTH +1];
12| __shared  float Bsh[TILE WIDTH][2 «TILE WIDTH +1];
13
14| cuFloatComplex Xtmp = make cuFloatComplex (0,0) ;
15
#pragma unroll
for (int m=0; m<ABwidth*ABwidth/TILE WIDTH; m++, A+=TILE WIDTH, B+=TILE WIDTH)
{
Ash[threadldx .y]|[threadldx.x] =
cuCrealf (A[ threadldx .x]) ;
Ash[threadldx.y][threadldx.x +TILE_WIDTH| =
cuCimagf (A[ threadIdx.x]) ;

NN N N e e
W N o= O O e N O

M

Bsh|[threadIdx .x][threadldx.y] =
cuCrealf (B[ threadldx .x]) ;
Bsh|[threadldx.x]|[threadIdx.y +TILE WIDTH] =

M
ot

N

27 —cuCimagf (B[ threadIdx.x]) ;

29 __syncthreads () ;

30

31 #pragma unroll

32 for (int k=0; k<TILE_WIDTH; k++)

33 {

34 Xtmp = make cuFloatComplex(

35 cuCrealf (Xtmp) +

36 Ash[threadldx.y][k]|*Bsh[k][ threadldx.x]| —

37 Ash[threadldx.y][k +TILE_WIDTH] *Bsh [k][threadIdx .x +TILE_WIDTH] ,
38

39 cuCimagf (Xtmp) +

40 Ash[threadldx.y][k +TILE_WIDTH] «Bsh [k][threadIdx.x] +
a1 Ash[threadldx.y][k]*Bsh[k][threadldx.x +TILE WIDTH]
42 )

43 }

44 __syncthreads () ;

45 }

46

17|C[0] = Xtmp;

48 }

Listing 4.7: Tiled Tracing Kernel
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Algorithm GFLOPS
Single Trace 5.6601
Tiled Trace 41.83
Prefetch Tiled Trace 154.01

Again, prefetching reduces the number of resident warps needed to hide global memory

latency. This is now a reasonable number.

4.4 Assembling the Correlator

As per eq 4.1, we have 2 x ¢ matrix multiplications to perform and all possible traces of
pairs. Looking at the kernels available to us, we wish to use the fastest ones we have in the
fastest way we can. The left temporaries are trivial as the kernels for computing these have
already been described. The right ones are of some interest.

One optimization we make is using the relation for propagators from eq 4.5
T(t,t+6) =7t + 9, )7

where, in the basis used to generate our data, s is of the form

V5 (4-6)

S = O O
_ o O O
o O = O

1
0
0
0

The matrices we use are, however, 256 x 256, so it’s the same idea, a unit matrix where the
lower half is exchanged for the top half.

It turns out a multiplication on either side by this matrix is quite easy to fold into a
kernel. As is multiplication on both sides by this matrix.

Considering our tiled tracing kernel accepted its right matrix in a transposed format, we

wish to store our resulting right temporary in a transposed format. From eq 4.1

XFB(t,6) = ®L(t)T(t,t + 0) (4.7)
= BH()s7(t+6,)7s (4.8)
(X[(t,0))" = ys7(t + 0,)75P;(t) (4.9)

This handy relation saves us from having to write a lot of awkward transposing code. All
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void RightTemporaryMultiply (const cuFloatComplex =*B, const cuFloatComplex =xA,
cuFloatComplex *C, int width)
{

//const uint Row = blockldx .y«TILE WIDTH + threadldx.y;
//const uint Col = blockldx .x«TILE WIDTH + threadldx .x;

A += ((blockldx.y+TILE_WIDTH + threadldx.y + width/2)%width) xwidth + threadldx
.x + width /2;

B += threadldx.yxwidth + (blockIdx.x«TILE WIDTH + threadIdx.x);

C 4= (blockldx.y«TILE WIDTH + threadldx.y) «width + (blocklIdx .x«TILE WIDTH -+
threadldx .x) ;

//some declarations

#pragma unroll
for (int m=0; mx<gridDim .x; mt+, A+=TILE WIDTH, B+=ITLE WIDTH xwidth)
{

if (m=—=gridDim .x/2)

{
A —= width;
}
//the rest of this loop

}

3| //the rest of the code

25| C[0] = cuConjf(Xtmp) ;

Listing 4.8: Multiplication Kernel To Generate The Right Temporary Matrices

we have to implement now is a kernel for right multiplications, where the A and B passed
to it are passed in reverse order, the B matrix is as before, but with its rows and columns
swapped, and the C matrix is output in a transpose format. All of this can be done with a

few small changes near the top of the kernel code.

4.5 Kernel Overlapping

As we have a lot of loading and operating to do, we can take advantage of kernel overlapping|7,
p 37]. On some CUDA cards, there is functionality for simultaneously loading data and ex-
ecuting kernels using streams. Instructions passed to a particular stream are executed in
sequence, but streams aren’t necessarily executed sequentially to each other. That means,
if a card supports kernel overlapping, one stream might be executing a data transfer while
another is simultaneously executing a kernel. By doing this, it is possible to hide some of

the transfer time from Host to Device with kernel executions.
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We choose an overlapping scheme where streams will have as little operational overlap

with each other. As such, we elect to split operations on different values of 0 into different

streams, since the sum over t for a correlator at d has no bearing on a correlator at § + t'.

cudaStream _t stream|[overlapLength];

//initialize streams etc...

for (int d=0; d<timeLength; d+=overlapLength)
for (int t=0; t<timeLength; t++)

{

for (int stream _
{
//schedule
}

for (int stream _
{
//schedule
//schedule
}

it=0; stream it<overlapLength; stream it++)

loading matrices to card using stream [stream it |

it=0; stream it<overlapLength; stream it++)
multiplication kernels using stream [stream it |

trace kernel using stream [stream it ]

Listing 4.9: An Approach To Overlapping
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Chapter 5

Measurements of Correlators and

Performance

5.1 Timing

Some times to compute correlators of different widths are as follows:

Size Time (s)
1x1 230
2x2 235
15 x 15 1301
16 x 16 298
17 x 17 758
32 x 32 967
64 x 64 1701

In the program written, we want to use our tiled trace kernel, but that requires the width
of the correlator to be a multiple of 16. What we do is fit the largest matrix whose width is
a multiple of 16 into our correlator and compute that much of the correlator using the tiled
trace routine and calculate the rest using a regular tracing routine.

As can be seen, completion time drops dramatically once the correlator reaches a width
of 16. However, there is a rather steep rise at 17. This is because, once a 16 x 16 chunk of
the correlator has been taken to be calculated, there are 17 x 16 = 272 elements that must
be calculated using the regular tracing routine. This number only rises as one strays from
multiples of 16, and as the correlator gets bigger. So, while the correlator can be computed
for a width not a multiple of 16, it shouldn’t.

It is worth noting that the execution time is roughly linear with correlator width.
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Figure 5.1: Eigenvalues for the correlator function with ®;(¢) = {5}

5.2 Some results

As we are lacking enough data to compute some 16 x 16 correlators, we opt instead for some
1 x 1, 2 x 2 and correlators, as a proof of concept.

As can be seen, Fig 5.3 doesn’t quite fit. There may be a problem in the program or the
databases somewhere. This should be investigated. Considering individual graphs turn out
nicely, it’s quite likely the problem is in the program written to produce these outputs.

Although there may be a problem in the construction of the program, it is still performing

at least on the order of the correct number of operations, so timings etc should still be valid.
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Figure 5.2: Eigenvalues for the correlator function with ®;(¢) = {ivyys}
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Figure 5.3: Eigenvalues for the correlator function with ®;(t) = {ivoys, 75}
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