
CLASSICAL FIELD THEORY AND ELECTRODYNAMICS

Summary of Formulæ and their Applications

1. Particle Dynamics. The Lorentz scalar action describing a particle of electric charge q and
four momentum pµ (µ ∈ {0, 1, 2, 3} ) interacting with an electromagnetic four potential Aµ

S = −
∫ (

pµ +
q

c
Aµ

)
dxµ

gives rise, through Hamilton’s variational principle, to the following particle equation of motion

dpµ

dτ
=

q

c
Fµν

dxν

dτ

where Fµν = ∂µAν − ∂νAµ with ∂µ referring to the partial derivative ∂/∂xµ and where the
relativistically invariant time increment dτ is given by c2dτ 2 = c2dt2 − d~x 2 = dxµ dxµ .

2. Vector Field Dynamics. In the Euler-Lagrange equation of motion for a scalar field ϕ(xρ)

∂µ

[
∂ L

∂ (∂µϕ)

]
− ∂ L

∂ ϕ
= 0

the variable ϕ may be replaced by the vector potential Aν to formulate an equation of motion
for a vector field. The Euler-Lagrange equation for the invariant Lagrangian density

L = −1
4
FρσF

ρσ − 1
c
JσAσ = 1

4
F σ

ρ F ρ
σ − 1

c
AσJ

σ

leads to the inhomogeneous and homogeneous Maxwell equations — and charge conservation

∂µF
µν = c−1Jν , ∂µF̃

µν = 0ν , ∂νJ
ν = 0 ,

where the 4-current density Jν has c times the charge density ρ as its zero component and
the three-current density ~J as its 3-vector component. Heaviside-Lorentz units are used
throughout.

3. Dual Tensor Components. Particular values ε123 = ε0123 = 1 and ε0123 = −1 normalise
the antisymmetric Levi-Civita symbols. Components of the electromagnetic field tensor F µν

and its dual tensor F̃ µν = 1
2
εµνρσFρσ may be related to elements of the electric and magnetic

fields using Aµ = (Φ, ~A ) with the identifications ~E = − ∂0
~A − ~5Φ and ~B = ~5× ~A

F i0 = Ei , F ij = −εijkBk ,

F̃ i0 = Bi , F̃ ij = εijkEk .

4. Stress Tensor. Using a known expression for εµνρσεαβγσ the stress tensor can be written as

Θ ν
µ = F σ

µ F ν
σ − 1

4
δ ν
µ F σ

ρ F ρ
σ = 1

2

(
F σ

µ F ν
σ + F̃ σ

µ F̃ ν
σ

)
leading to expressions for energy density and momentum density in terms of fields ~E and ~B.
Conservation of energy and momentum for particles and fields in combination follows from

∂µ Θ ν
µ = c−1JµF ν

µ .



SYSTEMS OF UNITS FOR CLASSICAL ELECTRODYNAMICS

The electric field is defined in a way that relates to force per unit charge. Coulomb’s law of
force indicates that the electric field ~E at a location ~r relative to a stationary charge q is

ke
~E =

1

4π

q

r2

~r

r

where ke is a constant multiplier of ~E that depends on the system of units employed. The
charge is assumed to be isolated in free space.

Ampère’s law and the Biot–Savart law may be re-written to express the magnetic induction
field ~B at location ~r relative to an isolated charge q moving slowly at constant velocity ~v

km
~B =

1

4π

q

r2

~v

c
×~r

r

where km is a constant multiplier of ~B that depends on the system of units employed. The
velocity of the non-accelerating charge is non-relativistic so that |~v | � c .

The Maxwell equations may be written in terms of the constant ke associated with ~E and
the constant km associated with ~B, where ∂0 refers to the operator c−1∂/∂t,

ke
~5· ~E = ρ , km

~5× ~B − ke ∂0
~E = ~J/c ,

km
~5· ~B = 0 , ke

~5× ~E + km ∂0
~B = ~0 .

The various systems of units in common use are summarised in the following table. The third
edition of Classical Electrodynamics by J. D. Jackson uses the Gaussian system of units in
its later sections.

System of units ke km

Electrostatic (esu) 1/4π c/4π

Electromagnetic (emu) 1/4πc2 4πc

Gaussian 1/4π 1/4π

Heaviside-Lorentz 1 1

Rationalised MKSA ε0 1/µ0c

The symbol c represents the limiting relativistic velocity and is likely to be the velocity of light.
For all systems of units the continuity equation for charge density ρ and 3-current density ~J
is

∂ρ

∂t
+ ~5· ~J = 0 .
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