CLASSICAL FIELD THEORY AND ELECTRODYNAMICS

Summary of Formulæ and their Applications

1. Particle Dynamics. The Lorentz scalar action describing a particle of electric charge q and four momentum p_{μ} ($\mu \in \{0, 1, 2, 3\}$) interacting with an electromagnetic four potential A_{μ}

$$S = -\int \left(p_{\mu} + \frac{q}{c}A_{\mu}\right) dx^{\mu}$$

gives rise, through Hamilton's variational principle, to the following particle equation of motion

$$\frac{dp_{\mu}}{d\tau} = \frac{q}{c} F_{\mu\nu} \frac{dx^{\nu}}{d\tau}$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ with ∂_{μ} referring to the partial derivative $\partial/\partial x^{\mu}$ and where the relativistically invariant time increment $d\tau$ is given by $c^2 d\tau^2 = c^2 dt^2 - d\vec{x}^2 = dx_{\mu} dx^{\mu}$.

2. Vector Field Dynamics. In the Euler-Lagrange equation of motion for a scalar field $\varphi(x^{\rho})$

$$\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \right] - \frac{\partial \mathcal{L}}{\partial \varphi} = 0$$

the variable φ may be replaced by the vector potential A_{ν} to formulate an equation of motion for a vector field. The Euler-Lagrange equation for the invariant Lagrangian density

$$\mathcal{L} = -\frac{1}{4}F_{\rho\sigma}F^{\rho\sigma} - \frac{1}{c}J^{\sigma}A_{\sigma} = \frac{1}{4}F_{\rho}^{\ \sigma}F_{\sigma}^{\ \rho} - \frac{1}{c}A_{\sigma}J^{\sigma}$$

leads to the inhomogeneous and homogeneous Maxwell equations — and charge conservation

$$\partial_{\mu}F^{\mu\nu} = c^{-1}J^{\nu}, \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = 0^{\nu}, \qquad \partial_{\nu}J^{\nu} = 0,$$

where the 4-current density J^{ν} has c times the charge density ρ as its zero component and the three-current density \vec{J} as its 3-vector component. Heaviside-Lorentz units are used throughout.

3. Dual Tensor Components. Particular values $\varepsilon^{123} = \epsilon^{0123} = 1$ and $\epsilon_{0123} = -1$ normalise the antisymmetric Levi-Civita symbols. Components of the electromagnetic field tensor $F^{\mu\nu}$ and its dual tensor $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ may be related to elements of the electric and magnetic fields using $A^{\mu} = (\Phi, \vec{A})$ with the identifications $\vec{E} = -\partial_0 \vec{A} - \vec{\nabla} \Phi$ and $\vec{B} = \vec{\nabla} \times \vec{A}$

$$F^{i0} = E^{i}, \qquad F^{ij} = -\varepsilon^{ijk}B^{k},$$

$$\widetilde{F}^{i0} = B^{i}, \qquad \widetilde{F}^{ij} = \varepsilon^{ijk}E^{k}.$$

4. Stress Tensor. Using a known expression for $\epsilon^{\mu\nu\rho\sigma}\epsilon_{\alpha\beta\gamma\sigma}$ the stress tensor can be written as

$$\Theta^{\nu}_{\mu} = F^{\sigma}_{\mu}F^{\nu}_{\sigma} - \frac{1}{4}\delta^{\nu}_{\mu}F^{\sigma}_{\rho}F^{\rho}_{\sigma} = \frac{1}{2}\left(F^{\sigma}_{\mu}F^{\nu}_{\sigma} + \widetilde{F}^{\sigma}_{\mu}\widetilde{F}^{\nu}_{\sigma}\right)$$

leading to expressions for energy density and momentum density in terms of fields \vec{E} and \vec{B} . Conservation of energy and momentum for particles and fields in combination follows from

$$\partial^{\mu} \Theta^{\nu}_{\mu} = c^{-1} J^{\mu} F^{\nu}_{\mu}.$$

The electric field is defined in a way that relates to force per unit charge. Coulomb's law of force indicates that the electric field \vec{E} at a location \vec{r} relative to a stationary charge q is

$$k_e \vec{E} = \frac{1}{4\pi} \frac{q}{r^2} \frac{\vec{r}}{r}$$

where k_e is a constant multiplier of \vec{E} that depends on the system of units employed. The charge is assumed to be isolated in free space.

Ampère's law and the Biot–Savart law may be re-written to express the magnetic induction field \vec{B} at location \vec{r} relative to an isolated charge q moving slowly at constant velocity \vec{v}

$$k_m \vec{B} = \frac{1}{4\pi} \frac{q}{r^2} \frac{\vec{v}}{c} \times \frac{\vec{r}}{r}$$

where k_m is a constant multiplier of \vec{B} that depends on the system of units employed. The velocity of the non-accelerating charge is non-relativistic so that $|\vec{v}| \ll c$.

The Maxwell equations may be written in terms of the constant k_e associated with \vec{E} and the constant k_m associated with \vec{B} , where ∂_0 refers to the operator $c^{-1}\partial/\partial t$,

$$k_e \vec{\nabla} \cdot \vec{E} = \rho, \qquad k_m \vec{\nabla} \times \vec{B} - k_e \partial_0 \vec{E} = \vec{J}/c,$$
$$k_m \vec{\nabla} \cdot \vec{B} = 0, \qquad k_e \vec{\nabla} \times \vec{E} + k_m \partial_0 \vec{B} = \vec{0}.$$

The various systems of units in common use are summarised in the following table. The third edition of *Classical Electrodynamics* by J. D. Jackson uses the Gaussian system of units in its later sections.

System of units	k_e	k_m
Electrostatic (esu)	$1/4\pi$	$c/4\pi$
Electromagnetic (emu)	$1/4\pi c^2$	$4\pi c$
Gaussian	$1/4\pi$	$1/4\pi$
Heaviside-Lorentz	1	1
Rationalised MKSA	ϵ_0	$1/\mu_0 c$

The symbol c represents the limiting relativistic velocity and is likely to be the velocity of light. For all systems of units the continuity equation for charge density ρ and 3-current density \vec{J} is

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0.$$

Course MA3431 www.maths.tcd.ie/~nhb/sjscft.php Dr Buttimore