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Abstract

It is always valid to ask if we are justi�ed in assuming a zero rest mass for
the photon. We follow Proca's treatment of a massive vector �eld with external
source and derive the Symmetric Stress Tensor, its Conservation Laws, and the
Equations of Motion. We then use these to predict the e�ect a heavy photon
would have on the Earth's Magnetic Field, following a method proposed by
Schrödinger. Using information on the Earth's Magnetic �eld, we put an upper
limit on the mass of the photon of ~4.10−48 g.

�. . . being heavy, I will bear the light . . . � proclaimed the melancholy hero in
Shakespeare's Romeo and Juliet. Is light heavy? What evidence is there to support
the assumption of Classical Electrodynamics that the photon has a zero rest mass?
These are valid questions and we shall consider them here. First, we will assume
that the photon has indeed a non-zero rest mass and derive its properties. Then,
in section 2, following a method proposed by Schrödinger we will predict the e�ect
a massive photon would have on the Earth's magnetic �eld and use recent data to
place an upper limit on the photon's rest mass.

1. The Proca Lagrangian

In 1930 Proca considered a Lagrangian density for a massive vector �eld, in in-
teraction with some external source J υ. To calculate any observable e�ects of a
heavy photon we will need to consider such a Lagrangian density. For completeness,
we derive the Symmetric Energy-Momentum Stress Tensor (with its time-time and
space-time components in terms of E and B) and the di�erential conservation laws
it obeys, as well as the equations of motion which we will need for the next section.

(a) The Stress Tensor

The Proca Lagrangian density for a massive vector �eld in interaction with an
external source is given as

Lp =
−1

16π
FµυF

µυ +
m2

8π
AµA

µ − 1

c
JµA

µ

with m = mγc/h̄, the Compton wave number of the photon, and mγ the �eld mass.
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Now, de�ne the Energy-Momentum Stress Tensor as

T µυ =

[
∂Lp

∂ (∂µAσ)

]
∂υAσ − gµυLp

so,

T µυ =
−1

4π
F µσ∂υAσ +

1

8π
gµυF σβ∂σAβ −

m2

8π
gµυAαA

α +
1

c
gµυJµA

µ

=
1

4π
gβυF µσFσβ −

1

4π
F µσ∂σA

υ +
1

8π
gµυF σβ∂σAβ −

m2

8π
gµυAαA

α +
1

c
gµυJµA

µ

=
1

4π
gβυF µσFσβ −

1

4π

[
F µσ∂σA

υ + Aυ∂σF
µσ + Aυ

(
4π

c
Jµ −m2Aµ

)]

+
1

8π
gµυF σβ∂σAβ −

m2

8π
gµυAαA

α +
1

c
gµυJµA

µ

by equations of motion,

=
1

4π
gβυF µσFσβ −

1

4π
Aυ

(
4π

c
Jµ −m2Aµ

)
− 1

4π
∂σ (F µσAυ)

+
1

8π
gµυF σβ∂σAβ −

m2

8π
gµυAαA

α +
1

c
gµυJµA

µ

So, we may construct the Symmetric Energy Momentum Stress Tensor by de�ning

Θµυ = T µυ − T µυD
where

2T µυD =
1

4π
gβυF µσFσβ −

1

4π
Aυ

(
4π

c
Jµ −m2Aµ

)

+
1

8π
gµυF σβ∂σAβ −

m2

8π
gµυAαA

α +
1

c
gµυJµA

µ

−
{

1

4π
gβυF µσFσβ −

1

4π
Aυ

(
4π

c
Jµ −m2Aµ

)
+

1

8π
gµυF σβ∂σAβ

−m
2

8π
gµυAαA

α +
1

c
gµυJµA

µ − 2.
1

4π
(∂σ (F µσAυ))

}
So,

2Θµυ =
1

4π
gβυF υσFσβ +

1

4π
gµβF υσFσβ +

2

8π
gµυF σβ∂σAβ −

1

4π
Aυ

(
4π

c
Jµ −m2Aµ

)

− 1

4π
Aµ

(
4π

c
Jυ −m2Aυ

)
+

1

c
JυAµ +

1

c
JµAυ − 2m2

8π
gµυAαA

α

=
1

4π
gµιFισF

συ +
1

16π
gµυFσβF

σβ +
m2

4π

(
AµAυ − 1

2
gµυAαA

α
)

So, �nally, we have that

4πΘµυ = gµιFισF
συ +

1

4
gµυFισF

ισ +m2
(
AµAυ − 1

2
gµυAιA

ι
)
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(b) Equations of Motion

For the Proca Field we have the Euler-Lagrange equations of motion as

∂µ

(
∂Lp

∂ (∂µAυ)

)
− ∂Lp
∂Aυ

= 0

Thus

∂µ

(
∂Lp

∂ (∂µAυ)

)
= ∂µ

(
∂

∂ (∂µAυ)

( −1

16π
FισF

ισ
))

= ∂µ

(
∂

∂ (∂µAυ)

( −1

16π
(∂ιAσ − ∂σAι) (∂ιAσ − ∂σAι)

))

=
−1

16π
∂µ

(
∂

∂ (∂µAυ)
(2 (∂ιAσ) (∂ιAσ)− 2 (∂σAι) (∂σAι))

)

=
−1

16π
∂µ (2∂µAυ + 2∂µAυ − 2∂υAµ − 2∂υAµ)

=
−1

4π
∂µF

µυ

Similarly,

∂Lp
∂Aυ

=
∂

∂Aυ

(
−1

16π
FµυF

µυ +
m2

8π
AµA

µ − 1

c
JµA

µ

)

=
∂

∂Aυ

(
m2

8π
gµυAµAυ −

1

c
gµυJµAυ

)

=
m2

4π
gµυAµ −

1

c
gµυJµ

So,

−1

4π
∂µF

µυ − m2

4π
gµυAµ +

1

c
gµυJµ = 0

So, the Proca equations of motion for the massive �eld are given as,

∂µF
µυ +m2Aυ =

4π

c
Jυ
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(c) Conservation Laws

Look at the di�erential conservation laws for the massive vector �eld,

∂µΘµυ =
1

4π
∂µ

(
gµιFισF

συ +
1

4
gµυFισF

ισ +m2
(
AµAυ − 1

2
gµυAιA

ι
))

=
1

4π

(
∂ι (Fισ)F συ + Fισ∂

ι (F συ) +
1

2
Fισ∂

υ (F ισ) +m2∂µ (AµAυ)− 1

2
∂υ (AιA

ι)
)

=
1

4π

((
4π

c
Jσ −m2Aσ

)
F συ + Fισ∂

ι (F συ) +
1

2
Fισ∂

υ (F ισ) +m2∂µ (AµAυ)− 1

2
∂υ (AιA

ι)
)

by the equations of motion. Therefore,

4π
(
∂µΘµυ − 1

c
JσF

συ
)

= Fισ∂
ι (F συ)+

1

2
Fισ∂

υ (F ισ)+m2∂µ (AµAυ)−1

2
∂υ (AιA

ι)−m2AσF
συ

Examine the term
F µσ∂µFσν +

1

2
F µσ∂νFµσ

=
1

2
Fϕσ[(∂µFϕσ + ∂ϕF σν) + ∂ϕF σν ]

now,
∂µF̃ µν = 0

therefore

∂ν(3ε
µνϕσFϕσ) = 0

which implies

6(2∂νFϕµ + ∂ϕFµν + ∂µFνϕ) = 0

so
1

2
Fϕσ[(∂µFϕσ + ∂ϕF σν) + ∂ϕF σν ]

=
1

2
Fϕσ[∂σFϕν + ∂ϕF σν ] = 0

which gives �nally:

4a(∂µΘµν 1

c
JσF

σν) = m2(∂µ(AµAν)− 1

2
∂ν(AϕAϕ)− AσF σν)

and in particular if we employ the Lorentz gauge we have that:

∂µΘµν =
1

c
JϕF

ϕν

as for the massless electromagnetic �eld.
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(d) Components

Here we give the time-time components of the Proca symmetric stress momentum
energy tensor

8πΘ00 = 2F0iF
i0 +

1

2
F0iF

0i +
1

2
F0iF

i0 +
1

2
FijF

ij + 2m2(A0A0 − AiAi)

= 2EiEi − EiEi +
1

2
(−εijkBk)(−εijlBl) +m2(A0A0 − AiAi)

= ~E2 + ~B2 +m2(A0A0 − AiAi)

Here, we exhibit the space-time components of the Proca tensor as,

8πΘi0 = gi0F0lF
l0 + g(ii)FilF

l0 +m2
(
AiA0 − 1

2
gl0AiA

i
)

= g(ii)FijF
j0 +m2(AiA0)

= εijkEiBk +m2AiA0

= ( ~E × ~B)i +m2AiA0

2. On a Geomagnetic Limit for the Photon Rest Mass

In 1943 Schrödinger proposed a method of estimating the mass of a photon. This,
he claimed, would have a measurable e�ect on the Earth's magnetic �eld, and using
sparse and innaccurate data puts forward a conservative estimate. We improve his
method using the machinery we developed in the previous section, and propose a
signi�cantly smaller number for the mass of the photon with the aid of more accurate
data from recent satellite and surface observations.

(a) Massive Vector Potential

The Proca equations of motion are:

∂βFβα + µ2Aα =
4π

c
Jα

where
Fβα = ∂βAα − ∂αAβ

Imposing the Lorentz guage condition

∂βAβ = 0

this implies that

(∂β∂β + µ2)Aα =
4π

c
Jα

For a steady-state distribution of current this becomes

(∇2 − µ2) ~A = −4π

c
~J
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We require a Green's Function satisfying

(∇2 − µ2)G(r) = −4πδ(r)

Consider r 6=0 :
(∇2 − µ2)G(r) = 0

as G = G(r) we can write

∇2G =
1

r

d2

dr2
(rG)

thus :
d2

dr2
(rG) = µ(rG)

rG = K exp±µr

As φ goes to as r→∞ we take

rG = K exp−µr
r

the (spherically symmetric) Yukawa potential. We require K = − 1
4π

so that :

(∇2 − µ2)G(r) = −4πδ(r)

for all r and:

G(~x, ~x,) = − 1

4π

exp−µ | ~x− ~x′ |
| ~x− ~x′ |

thus
~A = −4π

c

∫
G(~x, ~x′) ~J(~x′)d3x′

=
1

c

∫ exp−µ | ~x− ~x′ |
| ~x− ~x′ |

~J(~x′)d3x′

If there is a magnetisation ~M = ~mf(~x) where ~m is a �xed vector and f(~x) is a
localised scalar function then

~J = c∇× ~mf(x)

noting that in a steady state distribution of current the Lorentz guage becomes the
Coulomb guage, so

∇ · ~A = 0

and we obtain
~A = −~m×∇

∫
f(x)

exp−µ | ~x− ~x′ |
| ~x− ~x′ |

d3x′
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(b) Magnetic �eld

If the magnetic dipole is a point dipole at the origin then f(x) = δ(x) and

~A = −~m×∇e
−µr

r

with ~B = ∇× ~A. We have

∇e
−µr

r
= −e

−µr

r3
(µr + 1)~r ≡ R~r

Thus
~B = ∇× ((R~r)× ~m)

= (~m · ∇)(R~r)− ~m (∇ · (R~r))

where we have used the identity

∇×
(
~F × ~G

)
=
(
~G · ∇

)
~F − ~G

(
∇ · ~F

)
−
(
~F · ∇

)
~G+ ~F

(
∇ · ~G

)
and the fact that ~m is a constant vector. Consider now

(~m.∇)(φ~r)≡ma
∂
∂xa

(φxb~e
b)

using Einstein's summation convention (a=1,2,3) with ~eb the usual orthonormal
basis vectors. Thus

(~m.∇)(φ~r)≡ma

(
∂φ
∂xa

xb~eb + φδab
~eb
)

≡ ~(m.∇φ)~r+~mφ

= 3
e−µr

r3

(
1 + µr +

µ2r2

3

)
(r̂.~m) r̂ − e−µr

r3
(µr + 1) ~m

Now

∇. (φ~r) = φ (∇.~r) + (∇φ) .~r = 3φ+ (∇φ) .~r =
e−µr

r3

(
µ2r2

)
So we obtain,

~B = [3 (r̂.~m) r̂ − ~m]
(
1 + µr + µ2r2

3

)
e−µr

r
− 2

3
µ2 e−µr

r
~m

(c) Photon mass limit

J. D. Jackson tells us that

Hext

HAD

∼ 4× 10−3

(upper limit) on the surface of the earth (r=R). Thus

2
3
(µR)2

1 + µR + 1
3
(µR)2

= 4× 10−3

yielding,
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µR = 0.0806

This gives us a lower limit on µ−1of

µ−1 = 12.407

earth radii. Schrödinger, in his study, calls this the �characteristic length�. It is, of
course, the reciprocal Compton wavelength of a photon

µ =
c

h̄
m

Thus, an upper limit of the rest mass of the photon is

m ∼ 4× 10−48 g.

[A review of past and current studies of possible long-distance, low-frequency de-
viations from Maxwell electrodynamics and Einstein gravity has appeared in [4],
nhb.]
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