Inverse Matrices

JF Life and Earth Sciences

Square matrices with non-negative entries whose columns sum to one are Markov.

1. Over a period of time corresponding to a generation, and within a particular geographical region, observations are made of the population movements among people living in rural areas, towns, and cities:
(a) 60% of rural areas, 20% of towns, 20% of cities, move to the rurals
(b) 20% of rural areas, 40% of towns, 20% of cities, move to the towns
(c) 20% of rural areas, 40% of towns, 60% of cities, move to the cities.

If rows and columns label rural areas, towns, and cities in that order, explain why the square matrix M describing the changes in population over one generation is the Markov matrix

$$
M=\frac{1}{10}\left[\begin{array}{lll}
6 & 2 & 2 \\
2 & 4 & 2 \\
2 & 4 & 6
\end{array}\right]
$$

2. Rural, town and city numbers may be calculated in successive generations through repeated multiplication by the Markov matrix M. Obtain the population in the rural areas, towns, and cities, r_{3}, t_{3}, c_{3}, in generation $n=3$ by calculating the product of the matrix M with the column vector of population values in units of a thousand, $r_{2}=44, t_{2}=24, c_{2}=32$, corresponding to generation $n=2$, according to

$$
\left[\begin{array}{c}
r_{n+1} \\
t_{n+1} \\
c_{n+1}
\end{array}\right]=M\left[\begin{array}{c}
r_{n} \\
t_{n} \\
c_{n}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ccc}
3 & 1 & 1 \\
1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
r_{n} \\
t_{n} \\
c_{n}
\end{array}\right]
$$

3. Find the inverse, M^{-1}, of the matrix M by using a row reduction method on the matrix M augmented by the unit 3×3 matrix. Calculate $M^{-1} M$.
4. Use the inverse to calculate the thousands of people in the rural areas, towns, and cities, r_{1}, t_{1}, c_{1}, for generation $n=1$, given the above population values of generation $n=2$,

$$
\left[\begin{array}{c}
r_{n-1} \\
t_{n-1} \\
c_{n-1}
\end{array}\right]=M^{-1}\left[\begin{array}{c}
r_{n} \\
t_{n} \\
c_{n}
\end{array}\right] .
$$

5. Obtain the initial values of the populations of the rural areas, towns and cities in generation $n=0$. Indicate how you would determine the limiting populations after many generations have passed.

For a discussion of Markov Chains see Chapter 5 of Contemporary Linear Algebra by Howard Anton and R. C. Busby, John Wiley, (www.wiley.com/college/anton).

