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1. Introduction

The coincidence of different notions of fractal dimensions has been a topic of interest

for some time. The hyperbolic dimension is defined as the supremum of Hausdorff

dimensions of hyperbolic subsets. In general the dynamics of hyperbolic sets is well

understood. If Hausdorff and hyperbolic dimensions coincide then one may say that the

hyperbolic subsets approximate, in some sense, the original set. We study this problem

in the cadre of C2 maps of an interval I.

Definition 1.1 An interval map f : I → I is of class D (we also say f is a D-map) if

• f is of class C2;

• the critical set Crit = {c ∈ I : Df(c) = 0} is of finite cardinality;

• there are at most a finite number of parabolic periodic points of any one period;

• all critical points are C2 non-flat, i.e. for each c ∈ Crit, there is a C2

diffeomorphism ψ and an l > 1 such that locally f(x) = ±|ψ(x− c)|l + f(c);

• f : ∂I → ∂I.

One can define the Fatou set of an interval map as the set of points for which there

is a neighbourhood on which iterates of f form an equicontinuous family. For C2 maps

this coincides with the interior of the basins of attraction of periodic attractors. The

Julia set J is the complement of the Fatou set. See [1] for details.
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Given a continuous interval map f : I → I and subset K ⊂ I, let W be the

collection of connected components of I \ K. Following [2] we define the collection of

sets τ(K) as follows:

τ(K) = {W ∈ W : f(W ) ∩K 6= ∅}.

Definition 1.2 Given a C1 interval map f : I → I we say K is a τ -set for f if

• K is a forward-invariant (i.e. f(K) ⊂ K) compact subset of the Julia set of f ;

• the cardinality of τ(K) is finite;

• for all W ∈ τ(K), ∂W is pre-periodic.

The omega-limit set ω(x) of a point x is defined by

ω(x) =
⋂

N>0

{fn(x) : n ≥ N}

and that of a set S by

ω(S) =
⋃

x∈S

ω(x).

A point x for D-map f is non-recurrent if x /∈ ω(x).

Theorem 1 Let K be a τ -set for a D-map f such that each critical point of f contained

in K is non-recurrent. Then the Hausdorff and hyperbolic dimensions of K coincide.

Corollary 1.3 Suppose f : I → I is a D-map such that each critical point is non-

recurrent. Then the Hausdorff and hyperbolic dimensions of the Julia set J of f

coincide, i.e.

HD(J ) = HypD(J ).

Proof: The Julia set is completely invariant so τ(J ) = ∅ and J is a τ -set. Apply the

theorem to conclude. 2

Definition 1.4 A parabolic periodic point p of period q for interval map f shall be called

flat if one can write

f 2q(x) = x + ψ(x),

where limx→p ψ(x)(x− p)−n = 0 for all n ≥ 0.

For C∞ maps this condition on ψ is equivalent to Dnψ(p) = 0 for all n ≥ 0.

Theorem 2 Suppose for a D-map f there exists a closed interval U with the following

properties:

• there exists a flat parabolic point of period q such that p ∈ ∂U ;

• U contains no critical points of f 2q;

• f2q(x)−p
x−p

> 1 for all x ∈ U ;

• there exists V = [y, f 2q(y)] contained in U and an integer n such that fn(V ) ⊃ U .
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Then the hyperbolic dimension of the Julia set of f is equal to 1.

Corollary 1.5 There exists D-maps such that HypD(J ) = 1 but λ(J ) = 0, where λ

denotes Lebesgue measure.

Of course, the dynamics away from a forward-invariant compact set does not affect

the dynamics on the set itself. This motivates the following definition.

Definition 1.6 Let K be a compact set of an interval I. Two maps f and g are K-

equivalent if there is a neighbourhood V of K such that f|V = g|V .

Lemma 1.7 Let f and g be K-equivalent maps of class C1. Then the hyperbolic

dimension of K with respect to f and the hyperbolic dimension of K with respect to

g coincide.

Proof: A set K ′ ⊂ K is hyperbolic for f if and only if K ′ is also hyperbolic for g. 2

One can thus look for equivalent maps which are the best-behaved away from the

set of interest K.

Definition 1.8 Let K be a compact subset contained in the interior of an interval I.

For integers n ≥ 0 we say f is of class Mn(K) if

• f is a D-map of I;

• K is a τ -set for f ;

• there are exactly n critical points in K;

• each critical point in K is non-recurrent;

• all critical c ∈ (I \K) satisfy f(c) ∈ ∂I;

• both x ∈ ∂I are hyperbolic, attracting, fixed points.

The following result is slightly more general than Theorem 1 which one recovers by

applying Lemma 2.1.

Theorem 3 Given a compact subset K of an interval, let f be K-equivalent to a map

of class Mn(K) for some n ≥ 0. Then the Hausdorff and hyperbolic dimensions of K

coincide.

We denote by HypD(K) the hyperbolic dimension of K. The Hausdorff dimension

[7] of a set K, denoted here as HD(K), is defined as follows:

HD(K) = inf{t ≥ 0 : lim
ε↘0

(inf
U

∞∑

i=1

(diamUi)
t) <∞},

where U = {Ui}∞i=1 is a countable cover of K by sets Ui of diameter less than ε.

We say a set K is hyperbolic if it is forward-invariant and compact and there exists

an iterate of f such that |Dfn
|K| > 1. A point p of period q is parabolic if and only if

|Df q(p)| = 1.

In [6] the Mañé Hyperbolicity Theorem is proven: for D-maps, if all periodic points

of a forward-invariant compactK are hyperbolic repelling, with K not containing critical

points, then K is hyperbolic.
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In the real setting, Urbańksi [10] and Hofbauer [4] have studied weakly expanding

systems (systems f,K such that |Df ||K ≥ 1 with equality only at a finite number of fixed

points) in some detail. We allow the presence of critical points. Even without critical

points in K, Theorem 1 treats a wider class of dynamical systems: for example, if set

K contains a parabolic fixed point p for f and some point x ∈ K satisfies f(x) = p and

|Df(x)| < 1 then no iterate of f|K is weakly expanding since |Dfn(x)| = |Df(x)| < 1.

Both [10] and [4] also have extra conditions on behaviour near parabolic points.

For a survey of results about dimensions of Julia sets of rational maps of the

Riemann sphere see [11]. Theorem 4.5 of [11] states that for rational maps with parabolic

points and without recurrent critical points the Hausdorff and hyperbolic dimensions of

the Julia set coincide. The bulk of the work was carried out in [9]. For the same class of

rational maps, it is proven in [8] that either the Julia set is the whole Riemann sphere

or its upper Box dimension is < 2. We show that the analagous result is not true for

real maps: there exist Julia sets of Lebesgue measure zero but of hyperbolic dimension

equal to 1, see Corollary 1.5.

If f is a D-map with two fixed points p and q without a critical point inbetween,

then all points in [p, q] ∩ J are fixed and repelling on at least one side. By definition

of D-maps, the number of parabolic fixed points is at most countable. The number of

repelling fixed points is at most countable since f is C2. Thus HD([p, q] ∩ J ) = 0.

On the other hand, allowing an uncountable number of parabolic points can lead

to strange Julia sets. Given any Cantor set in an interval, one can define a monotone

increasing C2 function g such that 1
2
< Dg < 2, g leaves the Cantor set fixed and each

point of the Cantor set is parabolic with respect to g and attracting on one side and

repelling on the other. If there are no other fixed points in the interior of the interval

then the Cantor set coincides with the Julia set of g, yet there are no hyperbolic subsets.

The condition f : ∂I → ∂I is standard and ensures that branches of our induced

maps are full. Merely taking ∂I pre-periodic is sufficient: one can extend f to a larger

interval and add an element to τ(K).

The Julia set J of a function is completely invariant and so τ(J ) is empty. If the

Julia set contains recurrent critical points, upon removing all inverse images of suitable

small neighbourhoods of the recurrent critical points, a τ -set disjoint from the recurrent

critical points remains. Similarly, if one subsequently removes all inverse images of an

appropriate neighbourhood of parabolic points and any remaining critical points, then

a hyperbolic τ -set remains. Any hyperbolic subset of J is contained in such a set.

The next section contains a miscellany of results and definitions used in the rest of

the paper. Section 3 uses conformal measures to give a dimension estimate for expanding

induced maps. Then come sections giving dimension estimates for parabolic and critical

dynamics. Section 6 ties these results together to give a short proof of Theorem 3 which

combined with Lemma 2.1 proves Theorem 1. Finally in Section 7 we prove Theorem 2

and show how to construct a map which satisfies the claim of Corollary 1.5.
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2. Preliminaries

Lemma 2.1 Suppose K is a τ -set for D-map f , and that all critical points in K are

non-recurrent. Let n ≥ 0 be the number of critical points in K. Then there exists a map

g of class Mn(K) such that g is K-equivalent to f .

Proof: Let V be finite open cover of K such that V ∩ (Crit(f) \K) = ∅. Working on a

larger interval if necessary, by modifying f outside of V one can obtain a D-map g which

is K-equivalent to f and which sends all critical points not in K to the hyperbolically

attracting boundary.

It remains to show that K is a τ -set for g, which reduces to showing that for

all W ∈ τg(K), ∂W is preperiodic (here τg(K) is τ(K) for the map g). Suppose

there exists a positive n such that fn(W ) ∩ K 6= ∅. Then fn−1(W ) ∈ τf (K). Also

fn−1 : ∂W → ∂fn−1W by forward invariance of K, so ∂W is preperiodic. Otherwise,

for all n, fn(W ) ∩K = ∅. The absence of wandering intervals and forward invariance

of K then imply that the size of iterates |fn(W )| is bounded away from 0 so ∂W must

be preperiodic. 2

The following is proved in [3]:

Fact 2.2 Köbe principle: Let I be a compact interval and f : I → I be a C2 map

with all critical points C2 non-flat. Then there exists a continuous increasing function

σ, σ(0) = 0, with the following property. If J ⊂ T are open intervals and n ∈ N is such

that fn is a diffeomorphism on T then, for every x, y ∈ J , we have

Dfn(x)

Dfn(y)
≥ e−σ(maxn−1

i=0 |f i(T )|)·
∑n−1

i=0
|f i(J)|

(1 + ν(fn(J), fn(T )))2
, (1)

where for open intervals A ⊂ B, ν(A,B) = |A|
dist(A,∂B)

.

The bounding quantity (or its inverse) in inequality (1) is called a distortion bound.

Note that if the f i(J) are disjoint then the sum of the lengths of these intervals is

bounded by |I|. They will be disjoint for first entry and first return maps:

Definition 2.3 An interval U is regularly returning if and only if fn(∂U) ∩ U = ∅ for

every n > 0.

Its nice property is if A,B are intervals, fn(A) = fm(B) = U, n < m and A ∩ B 6= ∅,
then B ⊂ A. The first entry time to U , e(x), for a point x is defined as

e(x) = inf{k ≥ 0 : fk(x) ∈ U}.

The first return time to U , r(x), for a point x ∈ U is defined as

r(x) = inf{k ≥ 1 : fk(x) ∈ U}.

The first entry map ψU for U is defined by ψU(x) = f e(x)(x) where e(x) is defined.

Similarly the first return map φU for U is defined as follows: φU(x) = f r(x)(x). This is

only defined where r(x) is defined.
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If J 3 x is a connected component of the domain of φU for regularly returning

interval U , then the intervals J, f(J), . . . , f r(x)−1(J) are pairwise disjoint, and r(x) is

constant on J . This disjointedness property makes first return (and similarly first entry)

maps easy to work with.

When applying the Köbe principle, to bound max |f i(T )| one makes use of the

Contraction Principle [12].

Fact 2.4 Let f be a C2 map with a finite number of C2 non-flat, non-periodic critical

points. Then there exists a continuous increasing function γ, γ(t) → 0 as t → 0, such

that if fn maps open interval A diffeomorphically onto B, B disjoint from immediate

basins of periodic attractors, then |A| < γ(|B|).

The remaining ν(fn(J), fn(T )) tends to 0 as |fn(J)| does if fn(J) stays away from

∂fn(T ). In this paper fn(J) shall be a regularly returning interval compactly contained

in some interval disjoint from the forward orbit of the critical set.

A differentiable map φ is expanding if |Dφ| ≥ λ > 1, for some constant λ,

everywhere on the domain of definition of φ.

Lemma 2.5 Let I be a compact interval and f : I → I be a C2 map with all critical

points C2 non-flat. Suppose U ⊂ I is a regularly returning interval such that the first

return map φ to U is expanding, and that there exists an open interval V ⊃ U such that

every branch of φ extends (as an iterate of f) to a diffeomorphism onto V .

Then there exists a constant C > 1 such that

Dφn(x)

Dφn(y)
≤ C

for all x, y in the same connected component of the domain of φn.

Proof: Let J be a connected component of the domain of φ and nJ the number satisfying

fnJ

|J = φ|J . Since U is regularly returning, {f i(J)}nJ−1
i=0 is a pairwise disjoint collection

of intervals. Hence
nJ−1∑

i=k

|f i(J)| ≤ |I|

for all k = 0, 1, . . . , nJ − 1. Applying the Köbe principle, there exists a constant C0 > 1

independent of the connected component J such that

Dfk(x)

Dfk(y)
≤ C0

for all x, y in fnJ−k(J), for all k = 1, 2, . . . , nJ , for all connected components J of the

domain of φ.

Let g : W → g(W ) be a diffeomorphism of an interval W with distortion bounded

by C0, i.e. such that Dg(x)
Dg(y)

≤ C0 for all x, y in W . Let L be a subinterval of W . Writing

M = supW |Dg(x)|, it follows that |g(L)| ≥ M
C0
|L| and |g(W )| ≤M |W |, so

|g(L)|
|g(W )|

≥ |L|
C0|W |

.
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Hence, if C0|g(L)| ≤ α|g(W )| then |L| ≤ α|W |, for any α > 0. Thus, if J is a connected

component of the domain of φ and L is a subinterval of J such that C0|φ(L)| ≤ α|U |
then

|f i(L)| ≤ α|f i(J)|

for all i = 0, 1, . . . , nJ , and so
nJ−1∑

i=0

|f i(L)| ≤ α
nJ−1∑

i=0

|f i(J)|. (2)

Let λ > 1 satisfy |Dφ| ≥ λ everwhere on its domain. There is an N > 0 such that

λN > C0. Let A be a connected component of the domain of φN+n for some n > 0.

Since |Dφ| ≥ λ, we have

|φk(A)| ≤ λ−Nλk−n|U |

for all k ≤ N + n. Let J(k) denote the connected component of the domain of φ

containing φk−1(A). One has C0|φ(φk−1(A))| ≤ C0λ
−Nλk−n|U | ≤ λk−n|U |, so by (2), we

deduce, for k = 1, . . . , N + n, that

nJ(k)−1∑

i=0

|f i(φk−1(A))| ≤ λk−n

nJ(k)−1∑

i=0

|f i(J(k))| ≤ λk−n|I|.

Let m be such that fm
|A = φN+n

|A . It follows from the previous line that

m−1∑

i=0

|f i(A)| ≤
N+n∑

k=1

λk−n|I|

= λ−nλ
N+n+1 − λ

λ− 1
|I|

≤ λN+1

λ− 1
|I| =: C1

say. Apply the Köbe principle one last time to get

Dfm(x)

Dfm(y)
≥ eσ(|U |)C1

(1 + ν(U, V ))2
=: C−1

say, for all x, y in A. The constant C not depending on A or on n, we conclude that for

all n > 0,
Dφn(x)

Dφn(y)
≤ C

for all x, y in the same connected component of the domain of φn. 2

Lemma 2.6 Let f be a C1 map of the interval I with a finite number of critical points.

For any set J ⊂ I one has HD(f(J)) = HD(J).

Proof: Let Bδ be the set of all points of I less than some δ > 0 away from Crit. On

Bδ the derivative of f is bounded away from 0. Any cover of J \ Bδ disjoint from

Bδ is mapped by f to a cover of f(J \ Bδ) with bounded distortion. It follows that

HD(J \Bδ) = HD(f(J \Bδ)) for all δ > 0. Write J =
⋃

δ>0(J ∩Bδ)∪Crit and the result

follows. 2



Hyperbolic Dimension for Interval Maps 8

Lemma 2.7 Let f be a C1 map of the interval I with a finite number of critical points.

For any subset J ⊂ I one has HD(
⋃

n≥0 f
−n(J)) = HD(J).

Proof: It suffices to show that HD(f−n(J)) ≤ HD(J) for each n. But fn is C1 and has a

finite number of critical points and sends f−n(J) into J . Apply Lemma 2.6 to conclude.

2

Definition 2.8 The forward orbit O+(x) of a point x is defined by

O+(x) = {fn(x) : n ≥ 0}
and that of a set S by

O+(S) =
⋃

x∈S

O+(x).

Definition 2.9 Call a critical point c primary if c /∈ O+(f(Crit)), and primary with

respect to a set K if c /∈ O+(f(Crit ∩K)).

Lemma 2.10 Given a continuous map f , if y ∈ ω(x) then ω(y) ⊂ ω(x).

Proof: Follows from the definition and continuity. 2

Corollary 2.11 For a continuous map f , if y ∈ ω(x) and z ∈ ω(y) then z ∈ ω(x).

Corollary 2.12 For a continuous map f , if y ∈ O+(x) and z ∈ O+(y) then z ∈ O+(x).

Proof: Note that ω(x) =
⋂

n>0O+(fn(x)). 2

Lemma 2.13 Suppose there is a finite, strictly positive number of critical points in a

set K, and that all these critical points are non-recurrent. Then there exists a critical

point which is primary with respect to K.

Proof: Consider all sequences (c1c2 . . .) such that ci ∈ Crit∩K and ci+1 ∈ O+(f(ci)). We

claim that there is a sequence of maximal length (possibly equal to 1). For otherwise

there would be a sequence of length greater than #Crit, and two occurrences of the

same critical c in the same sequence, together with Corollary 2.12, imply c is not non-

recurrent, contradiction.

Now consider a maximal such sequence (c1 . . . cr). We claim c1 is primary with

respect to K. For if c1 ∈ O+(f(c0)) say for some c0 ∈ K∩ Crit, then (c0c1 . . . cr) is a

longer such sequence, contradicting maximality. 2

3. Dimension Estimate for Induced Maps

Let A ⊂ B be measurable subsets of an interval endowed with the usual subspace

topology. Let t be a real number and g : A→ B a C1 function.

Definition 3.1 A measure m on B is called t-conformal if

m(g(C)) =
∫

C
|Dg(x)|tdm, (3)

whenever C is measurable, g(C) is measurable and g|C is injective. It is also a probability

measure if m(B) = 1.
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Let {Ji}∞i=1 be a countable collection of pairwise-disjoint, open subintervals of an

open interval U satisfying:

• Ji ∩ Jj = ∅ for all i 6= j;

• Ji ∩ ∂U = ∅ for all i.

Let φ :
⋃

i≥1 Ji → U be a C1 (or C2) function such that for each i, the restriction

φ|Ji
is a diffeomorphism between Ji and U . Suppose also that φ is expanding, i.e. there

exists λ such that |Dφ| ≥ λ > 1, and that on each branch supx∈Ji
|Dφ| < Mi for some

constant Mi <∞.

Let Zn =
⋃n

i=1 Ji, Z =
⋃∞

n=1 Zn, and set

Ln = {x ∈ Zn : φj(x) ∈ Zn ∀j ≥ 0}

=
∞⋂

j=0

φ−j(Zn)

=
∞⋂

j=0

φ−j(Zn ∩ φ−1(Zn))

and L = {x ∈ Z : φj(x) ∈ Z ∀j ≥ 0}.

Let φn be the restriction of φ to Zn. Then Ln is completely invariant with respect

to φn and is compact, as a countable intersection of closed sets, thus it is hyperbolic.

It is long-known [5] that there exists an atom-free tn-conformal probability measure mn

for φn : Zn → U with support on Ln, where tn is the Hausdorff dimension of Ln.

Lemma 3.2 There exists a t-conformal probability measure m for φ : Z → U where

t = lim
n→∞

HD(Ln).

Proof: Let m be a weak limit point of the tn-conformal probability measures mn

for φn : Zn → U . We first show t-conformality of m for φ : Ji → I for each i. This is a

standard convergence argument.

Suppose A ⊂ Ji satisfies m(∂A) = m(∂φ(A)) = 0. Then, using conformality of mn

for φ : Ji → I when n > i,

m(φ(A)) = lim
n→∞

mn(φ(A)) = lim
n→∞

∫

A
|Dφ|tndmn =

∫

A
|Dφ|tdm.

Now we deal with subsets A compactly contained in Ji. For ε > 0 consider an open

cover of A by a countable family of sets {Bj} satisfying m(∂Bj) = m(∂φ(Bj)) = 0 and

Bj ⊂ Ji and

m(
⋃

j

Bj \ A) <
ε

Mi
.

We can now define inductively a partition {Cj} of
⋃

j Bj as follows:

C1 = B1, Cj+1 = Bj+1 \
j⋃

k=1

Bj.
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We have shown m is t-conformal for each Cj. Thus

m(φ(A)) ≤ m(
⋃

j

φ(Cj)) =
∑

j

m(φ(Cj))

=
∑

j

∫

Cj

|Dφ|tdm =
∫
⋃

j
Cj

|Dφ|tdm

=
∫

A
|Dφ|tdm+

∫
⋃

j
Cj

|Dφ|tdm ≤
∫

A
|Dφ|tdm+ ε.

This is true for all ε > 0 so m(φ(A)) ≤
∫
A |Dφ|tdm. In the other direction, using the

same partition,

m(φ(A)) =
∑

j

(m(φ(Cj)) −m(φ(Cj \ A)))

≥
∑

j

∫

Cj

|Dφ|tdm−
∑

j

∫

Cj\A
|Dφ|tdm

≥
∫

A
|Dφ|tdm− ε.

If A is open and ∂A ∩ ∂Ji 6= ∅, let Cj ⊂ A be increasing subsets of A such that
⋃

j≥1Cj = A.

lim
j→∞

m(φ(A \ Cj)) = lim
j→∞

m(A \ Cj) = 0

implies m is t-conformal for A. We conclude m is t-conformal for φ : Ji → I for all i.

Each open set containing points of L contains an interval which is sent by some

iterate of φ onto I, and thus is of positive measure, if I is. We show that for any Ji

compactly contained in I, m(Ji) ≥ 1
Mi

:

mn(φ(Ji)) = mn(I) = 1

=
∫

Ji

|Dφ|tndmn

≤M tn
i mn(Ji)

≤Mimn(Ji)

mn(Ji) ≥ 1

Mi
.

Letting n→ ∞, m(Ji) ≥ 1
Mi

, as required, so m is not trivial (zero) on U .

Defining m′ = 1
m(I)

m we obtain a t-conformal probability measure as required. 2

Proposition 3.3 Suppose that there is a constant C such that for all n and all x, y

belonging to a connected component of the domain of φn,

Dφn(x)

Dφn(y)
≤ C.

Then the Hausdorff dimension of L is equal to t = limn→∞HD(Ln).
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Proof: Of course L ⊃ Ln so HD(L) ≥ t. Let m be the measure from the preceding

lemma. Consider a pairwise-disjoint, countable cover of L by {Cj}j≥1 where for each j

there exists nj > 0 such that φnj : Cj → U is a diffeomorphism. For every ε > 0 there

exists such a cover with diam(Cj) < ε for all j since |Dφ−1| ≤ λ−1 < 1. From above,

the distortion of φnj on each Cj is bounded by some constant C independent of j and ε.

We find a finite bound for
∑

j≥1diam(Cj)
t independently of ε which shows HD(L) ≤

t:

m(U) =
∫

Cj

|Dφnj(x)|tdm

≤ Ct|Dφnj(x0)|tm(Cj).

diam(U)t =

(∫

Cj

|Dφnj(x)|dλ
)t

≥ C−t|Dφnj(x0)|tdiam(Cj)
t

for some fixed x0 ∈ Cj. Dividing, we find

diam(Cj)
t

m(Cj)
≤ C2tdiam(U)t

m(U)

which gives

diam(Cj)
t ≤ C2tdiam(U)t

m(U)
·m(Cj).

Since m is a probability measure and the Cj are pairwise disjoint the sum of

m(Cj) ≤ 1 and

∑

j≥1

diam(Cj)
t ≤ C2tdiam(U)t

m(U)
<∞,

as required. 2

We shall now apply these results to induced maps. Let K be a forward invariant

compact set for a D-map f .

Definition 3.4 We say (φ, Z,K) is an induced Markov system if there is an open

interval U such that for all W ∈ τ(K), one has U ∩ O+(∂W ) = ∅ and there is a

collection of intervals {Ji}∞i=1 with Z =
⋃

i Ji and a map φ : Z → U such that the

following hold:

• K ∩ Ji 6= ∅ for all i;

• on each Ji there is an ni > 0 such that φ|Ji
= fni

|Ji
;

• Ji ∩ Jj = ∅ for all i 6= j;

• Ji ∩ ∂U = ∅ for all i;

• φ : Ji → U is a diffeomorphism onto U ;
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• there is a constant C such that for all n > 0 and all x, y belonging to a same

connected component of the domain of φn,

Dφn(x)

Dφn(y)
≤ C.

As before, let Zn =
⋃n

i=1 Ji, Z =
⋃∞

n=1 Zn, and set

Ln = {x ∈ Zn : φj(x) ∈ Zn ∀j ≥ 0}
and L = {x ∈ Z : φj(x) ∈ Z ∀j ≥ 0}.

We can then apply Proposition 3.3 to get

HD(L) = lim
n→∞

HD(Ln). (4)

This will be interesting if we show that L ⊂ K and that Ln is contained in a hyperbolic

set.

Lemma 3.5 Let (φ, Z,K) be an induced Markov system for a D-map f and let L =

{x ∈ Z : φj(x) ∈ Z ∀j ≥ 0}. Then L ⊂ K.

Proof: By definition, K ∩ Z is non-empty. Suppose x ∈ Z satisfies φ(x) ∈ K. Let i

be such that x ∈ Ji. Let ni be such that φ|Ji
= fni

|Ji
. By definition, for all W ∈ τ(K)

the forward orbit of ∂W under f is disjoint from U . Thus for all 0 ≤ n < ni, we have

fn(Ji) ∩ ∂W = ∅. Again by definition, Ji ∩ K 6= ∅, so for all 0 ≤ n < ni, we have

fn(Ji) ∩W = ∅ and thus x ∈ K. Therefore K ∩ Z is backward-invariant with respect

to φ. The set of all inverse images of x by φ is contained in K and is dense in L. By

compactness of K, L ⊂ K. 2

Lemma 3.6 For all n > 0, the set Ln considered above is contained in a hyperbolic set

for f .

Proof: The set
n⋃

i=1

ni⋃

j=0

f j(Ji ∩ Ln)

is a forward invariant compact and is at a positive distance from all critical and parabolic

points. By the Mañé Hyperbolicty Theorem [6] it is a hyperbolic subset of K containing

Ln. 2

Proposition 3.7 Let (φ, Z,K) be an induced Markov system for a D-map f and let

L = {x ∈ Z : φj(x) ∈ Z ∀j ≥ 0}. Then HD(L) ≤ HypD(K).

Proof: Each Ln is contained in a hyperbolic set so HD(Ln) ≤ HypD(K). Apply equation

(4) to conclude. 2
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4. Parabolic Estimates

Let K be a compact subset of the interval and let f be K-equivalent to a function

of class M0(K). Our goal in this section is to show that the set of points in K whose

forward orbits accumulate on the parabolic periodic points has Hausdorff dimension less

than the hyperbolic dimension of K.

Definition 4.1 For a D-map f and forward-invariant set K, denote by Rec(x,K) the

set of points y ∈ K such that x ∈ ω(y). If S is a set then

Rec(S,K) =
⋃

x∈S

Rec(x,K).

Proposition 4.2 Let K be a compact set and f a map of class M0(K) with a parabolic

periodic point p such that f(p) = p and Df(p) = 1. Then

HD(Rec(p,K)) ≤ HypD(K).

Proof: We shall construct an expanding induced map and apply the estimates of the

Section 3.

Recall that τ(K) is finite and for all W ∈ τ(K), ∂W is preperiodic. Thus the set

of points

S =
⋃

n≥0

⋃

W∈τ(K)

fn(∂W )

is finite. Since f is of class M0(K), all critical points are mapped directly to the

attracting boundary ∂I.

Let U be a small, regularly returning, open interval whose closure is disjoint from

S ∪ ∂I∪Crit and such that p ∈ ∂U . If there is a fixed point q in U then HD((p, q)) = 0.

Henceforth, suppose there is no fixed point in U and that f(U) \ U 6= ∅, so p is

topologically repelling in U .

Now U is compactly contained I and all branches of the first return map to U ,

or indeed any subinterval of I, extend to diffeomorphisms onto the interior of I. By

Fact 2.2, there exists a constant C > 1 such that the first return map to any regularly

returning interval contained in U has distortion bounded by C. Indeed, one can take

C−1 =
e−σ(|I|)|I|

(1 + ν(U, I))2
.

Denote by g the branch of f−1 which fixes p. Since p is a parabolic point,

lim
n→∞

|gn(U) \ gn+1(U)|
|gn+1(U)|

= 0.

Thus there exists N > 0 such that if n ≥ N then

|gn(U) \ gn+1(U)|
|gn+1(U)| ≤ 1

2C2
.

Let V be the largest of the intervals gn(U) \ gn+1(U) where n ≥ N , realised for n = n0,

and let T be the interval gn0+1(U). Then |V |
|T | <

1
2C2 . Denote by ψV the first entry map
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to V and by ψT the first entry map to T . Both of these maps have distortion bounded

by C.

Consider the map φ = ψT ◦ ψV |T , where ψV |T is the restriction of ψV to T . The

domain of φ is contained in T , and φ has distortion bounded by C2. Let J be a connected

component of the domain of φ. Then J ⊂ gn(U) \ gn+1(U) for some n > n0, so

|J | ≤ |V | ≤ 1

2C2
|T |.

J is mapped by φ onto T , so there exists x ∈ J such that |Dφ(x)| ≥ 2C2. For all y ∈ J

one deduces

|Dφ(y)| ≥ 1

C2
2C2 = 2,

so |Dφ| ≥ 2 everywhere on its domain of definition. By Lemma 2.5, there is a bound

C ′ on the distortion of branches of φn independent of the n ≥ 1.

Denote by Z the union of the connected components of the domain of φ which have

non-empty intersection with K. Then (φ, Z,K) is an induced Markov system. Let

L = {x ∈ K ∩ T : φn(x) ∈ Z for all n ≥ 0}.

By Proposition 3.7, HD(L) ≤ HypD(K). Note that L contains all points in Rec(p,K)∩T
whose forward orbits accumulate on p in T .

The same argument for the other side of the parabolic point p combined with

Lemma 2.7 allows us to conclude that HD(Rec(p,K)) < HypD(K). 2

Theorem 4 Let K be a compact subset of the interval and let f be K-equivalent to a

function of class M0(K). Then

HD(K) = HypD(K).

Proof: By Lemma 1.7 we can assume f is of class M0(K). Iterates fn of f are then

of class M0(K). Hyperbolic dimensions with respect to f and with respect to iterates

fn coincide. Let p be a parabolic point of period n say. Then p, f(p), . . . , fn−1 are all

fixed points of the map f 2n with Df 2n(f i(p)) = 1. Denote by π(K) the parabolic points

contained in a set K. We apply Proposition 4.2 for the map f 2n for each n > 0 to get

that

HD


 ⋃

p∈π(K)

Rec(p,K)


 ≤ HypD(K).

Consider S = K \ (
⋃

p∈π(K) Rec(p,K)). It remains to show that HD(S) ≤ HypD(K).

For δ > 0 let Bδ be the δ-neighbourhood of the parabolic set π(K), i.e. the set of points

at a distance < δ from π(K). Put

Kδ = K \
⋃

i≥0

f−i(Bδ).

One can then write

S =
⋃

δ>0

Kδ,



Hyperbolic Dimension for Interval Maps 15

so

HD(S) = sup
δ>0

HD(Kδ).

Each Kδ is hyperbolic by the Mañé Hyperbolicity Theorem and every hyperbolic set is

contained in a Kδ for some δ > 0. 2

5. Critical Estimates

Let K be a compact subset of the interval and let f be K-equivalent to a function of

class Mn(K). Our goal in this section is to show that the set of points whose forward

orbits accumulate on the critical set has Hausdorff dimension less than the hyperbolic

dimension of K. Recall that for a point x, Rec(x,K) was defined in Definition 4.1.

Proposition 5.1 Let K be a τ -set for a D-map f with a primary critical point c. Then

HD(Rec(c,K)) ≤ HypD(K).

Proof: As per the previous section, we shall construct an expanding induced map and

apply the results of Section 3.

Since c is primary, there exists an open, regularly returning neighbourhood V ′ of

c such that every branch of the first return map to V ′ is a diffeomorphism onto V ′.

Similarly, for all regularly returning intervals U ⊂ V ′, every branch of the first return

map to U is a diffeomorphism onto U which extends to a diffeomorphism onto V ′. Of

course, the domain of the first return map to U does not contain c.

If HD(Rec(c,K)) 6= 0 then branches of the first return map to V ′ accumulate on

c. By Fact 2.2, for all C0 > 1 there exists δ > 0 such that if V is a regularly returning,

open neighbourhood of c and |V | < δ then the first return map has distortion bounded

by C0. Fix C0 with 1 < C0 <
4
3

and a corresponding δ.

An elementary argument gives that C2 non-flatness of the critical points implies

that f is almost symmetric near each critical point. That is, if f−1
− is the branch of f−1

sending f(c) to c such that f−1
− (x) ≤ c for all x in its domain, and ε > 0, then

lim
ε→0

∣∣∣∣∣
c− f−1

− (f(c+ ε))

ε

∣∣∣∣∣ = 1.

Then there exists a δ′ > 0 such that if V is a neighbourhood of c, f(∂V ) is a point (such

a V is sometimes called symmetric) and |V | < δ′, then for all intervals W ⊂ V which

do not contain c, |W |
|V | <

2
3
.

Consider such a V which is regularly returning and also satisfies |V | < δ. Let

W be a connected component of the domain of the first return map φV to V . Then
|W |
|V | <

2
3

and φV sends W onto V so there is a point x ∈ W such that |DφV (x)| > 3
2
.

The distortion bound then implies that |DφV | > 9
8

on W and thus everywhere on its

domain.

Since φV satisfies |DφV | ≥ 9
8
> 1 we can apply Lemma 2.5 so there exists a bound

C on the distortion of branches of φn
V independent of n ≥ 1.
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Recall that τ(K) is finite and for all W ∈ τ(K), ∂W is preperiodic. Thus the set

of points

S =
⋃

n≥0

⋃

W∈τ(K)

fn(∂W )

is finite.

Let U ⊂ V be a small, regularly returning, open interval disjoint from S and such

that c ∈ ∂U . Also assume that ∂U is not in the domain of φV , so that branches of the

first return map φU to U accumulate on ∂U .

Denote by Z the union of the connected components of the domain of φU which

have non-empty intersection with K. Then (φU , Z,K) is an induced Markov system.

Let

L = {x ∈ K ∩ T : φn
U(x) ∈ Z for all n ≥ 0}.

By Proposition 3.7, HD(L) ≤ HypD(K). Note that L contains all points in Rec(c,K)∩U
whose forward orbits accumulate on p in U .

The same argument for the other side of the critical point c combined with Lemma

2.7 allows us to conclude that HD(Rec(c,K)) < HypD(K). 2

Theorem 5 For all integers n ≥ 0 the following statement holds. Let K be a compact

subset of the interval and let f be K-equivalent to a function of class Mn(K), then

HD(Rec(Crit, K)) ≤ HypD(K).

Proof: We shall provide a proof by induction. Note that the statement of the theorem

is trivially true if n = 0. Suppose that the statement holds for all n ≤ N − 1. We must

show that it holds for n = N . Consider a compact set K and map f such that f is

K-equivalent to a function of class MN(K). By Lemma 1.7 we can assume f is of class

MN (K). By Lemma 2.13 f has a primary critical point c. Now apply Proposition 5.1

to get

HD(Rec(c,K)) ≤ HypD(K).

Let S = Rec(Crit, K) \ Rec(c,K). It thus remains to show that HD(S) ≤ HypD(K).

For δ > 0 let Bδ be the ball of radius δ around the primary critical point c and let

Kδ = K \
⋃

i≥0

f−i(Bδ).

One can then write

S =
⋃

δ>0

Rec(Crit, Kδ) ∪
⋃

i≥0

f−i(c),

so

HD(S) = sup
δ>0

HD(Rec(Crit, Kδ)).

Since c is primary, for sufficiently small δ the ball Bδ is disjoint from O+(f(Crit)). Thus

f is Kδ-equivalent to a map of class MN−1(Kδ). Applying the inductive hypothesis gives

HD(Rec(Crit, Kδ)) ≤ HypD(Kδ) ≤ HypD(K).

Therefore HD(S) ≤ HypD(K) as required. 2
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6. Proof of Theorem 3

Given a compact subset K of an interval, let f be K-equivalent to a map of class

Mn(K). We wish to show that the Hausdorff and hyperbolic dimensions of K coincide.

By Lemma 1.7 we can assume f is of class Mn(K). We need the following lemmas:

Lemma 6.1 Let U be a connected component of I \K and let y ∈ ∂U ∩K. Then y is

preperiodic.

Proof: If f i(U) ∈ τ(K) for some i ≥ 0 then f i(y) is preperiodic, so y is and we are

done. Henceforth we assume f i(U) ∩K = ∅ for all i ≥ 0, so f i(U) /∈ τ(K) for any i.

Any critical points in I \K are mapped directly into the attracting boundary since

f is of class Mn(K). By the absence of wandering intervals ([1], theorem A, p 267),

either some iterate of U contains a critical point of f (in I \ K) or has non-empty

intersection with an immediate basin of attraction of a periodic attractor ([1], lemma

II.3.1). In either case, we get that there exists an m > 0 and a p > 0 such that fm(U)

has non-empty intersection with the immediate basin of a periodic attractor A of period

p say. Now fm(y) ∈ K, so it is not contained in any basin of attraction. The boundary

∂A is periodic of period p or 2p. If fm(y) ∈ ∂A we are done; otherwise fm(U) contains

a point x of ∂A. This point acts as an anchor: fm+2kp(U) 3 x for all k ≥ 0. If k is

not preperiodic then fm+p(U) ∪ fm+2p(U) 3 fm(k), contradicting f i(U) ∩K = ∅ for all

i ≥ 0. 2

Lemma 6.2 Preperiodic points are dense in the Julia set of f .

Proof: This actually hold for all maps of class D. Lebesgue almost every point either

is contained in the basin of attraction of a periodic point or accumulates on a critical

point. The boundary of the basins of attraction consists of preperiodic points (periodic

points at the boundary of the immediate basins). Thus preperiodic points are dense

anywhere the Julia set is not connected.

Now let U be an interval contained in the Julia set. It suffices to show that U

contains a preperiodic point. By Fact 2.4, the size of f i(U) is larger than some constant

ε for all i ≥ 0. Thus X :=
⋃

i≥0 f i(U) is a finite union of intervals which get mapped

into each other by f , so at least one of them contains a periodic point. We claim that

there exists an m > 0 such that
⋃m

i=0 f
i(U) = X.

Indeed, suppose otherwise. Since f is continuous and has only a finite number of

critical points, there is an n > 0 such that X \⋃n
i=0 f

i(U) is a finite collection of intervals

mapped monotonically into each other by f . But then they cannot be contained in the

Julia set, which is a contradiction since the Julia set is completely invariant set which

thus contains all iterates of U . 2

Lemma 6.3 For each δ > 0 there exists a neighbourhood Vδ of Crit∩K, which satisfies

the following conditions:

• each connected component of Vδ contains at least one critical point;
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• every point x ∈ Vδ ∩K satisfies dist(x,Crit ∩K) ≤ δ;

• the boundary of Vδ is made up entirely of preperiodic points contained in K ∩ ∂I.

Proof: Let c be in Crit∩K. Let J be a connected component of I \ {c}. If

K ∩ J ∩ B(c, δ) = ∅, let p be the point in J ∩ (K ∪ ∂I) which is closest to c, so

(p, c) ∩K = ∅. By Lemma 6.1 p is preperiodic. If K ∩ J ∩ B(c, δ) 6= ∅ then J ∩B(c, δ)

either contains connected components of I \K or (non-exclusively) contains an interval

contained in K. Either way, there is a preperiodic point p contained in K ∩ J ∩B(c, δ).

One finds in the same way a point p′ for the other side of c.

Define Vδ as the union of intervals (p, p′) constructed in this manner around each

critical point in Crit∩K. It satisfies the claims of the lemma. 2

We now conclude the proof of Theorem 3. Let S = K\Rec(Crit, K). By Theorem

5 it only remains to show that HD(S) ≤ HypD(K).

Kδ = K \
⋃

i≥0

f−i(Vδ),

where Vδ is given by the preceding lemma for δ small. Due to the properties of Vδ, Kδ

is a τ -set: we have only added at most a finite number of sets to τ(K), each being a

connected component of Vδ with preperiodic boundary. One can then write

S =
⋃

δ>0

Kδ ∪
⋃

i≥0

f−i(Crit ∩K),

so

HD(S) = sup
δ>0

HD(Kδ).

It now suffices to show that HD(Kδ) = HypD(Kδ), since Kδ ⊂ K. But f is Kδ-equivalent

to a map of class M0(Kδ). Applying Theorem 4 gives the required result.

7. Lebesgue 0, Hausdorff 1

Recall the cadre of Theorem 2:

We suppose for D-map f that there exists a closed interval U with the following

properties:

• there exists a flat parabolic point of period q such that p ∈ ∂U ;

• U contains no critical points of f 2q;

• f2q(x)−p
x−p

> 1 for all x ∈ U ;

• there exists V = [y, f 2q(y)] contained in U and an integer n such that fn(V ) ⊃ U .

Consider the set W = U ∪ f(V ) ∪ · · · ∪ fn−1(V ). The collection of points K that stay

in W forever form a non-empty, forward-invariant, compact set. We can then study

hyperbolic subsets of W . The Denker-Urbanski construction (similarly to Section 3) on

increasing hyperbolic subsets of K gives in the limit a t-conformal probability measure

m on K with t = HypD(K) ≤ 1. We shall show t = 1.
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For simplicity, let F = f 2q, let g be the branch of F−1 which fixes p and suppose,

without loss of generality, that p ≤ x for all x ∈ U .

Since m is conformal and f 2n(V ) covers K it follows that m(V ) > 0. One has
∑

n≥0 |gn(V )| ≤ |U | so by Fact 2.2 there is a constant C such that

DF n(x)

DF n(y)
< C

for all x, y ∈ gn(V ) for all n > 0. Thus by t-conformality (as per Section 3)

|gn(V )|t ≤ C|V |t

m(V )
m(gn(v)).

Summing both sides

∑

n≥0

|gn(V )|t ≤ C|V |t

m(V )
<∞. (5)

Up as far as here is well-known (see [10]). Let

b(x) = sup{gn(y) : gn(y) < x}.

Then b(x) is constant on the interior of each interval gn(V ) and

|gn(V )|t = |F (gn(y)) − gn(y)|t =
∫

gn(V )
|F (b(x)) − b(x)|t−1.

Summing one gets

∑

n≥0

|gn(V )|t =
∫ F (y)

p
|F (b(x)) − b(x)|t−1 <∞,

where the finiteness of the sum and integral comes from inequality (5).

Now for each positive number r, by flatness of the parabolic point, there exists a

δ > 0 such that for all x ∈ (p, p + δ] one has x < F (x) < x + (x − p)r. Also b(x) < x,

thus

|F (b(x)) − b(x)| < (x− p)r.

Since t− 1 ≤ 0 we have
∫ F (y)

p
|F (b(x)) − b(x)|t−1 ≥

∫ p+δ

p
(x− p)r(t−1)

which is integrable only if r(t− 1) > −1. But this means t > r−1
r

and this holds for all

positive numbers r so t ≥ 1. Thus t = 1 and Theorem 2 is proven. 2

To finish, we show that such maps can exist. Let a > 0 and on the interval [−a, 1+ a
3
]

let the function f satisfy:

• f(−a) = −a;
• f(x) < x for all x such that −a < x < 0;

• if x ∈ [0, 1
3
] then f(x) = x+ e3−

1
x
+log 2

3 ;

• if x ∈ [2
3
, 1 + a

3
] then f(x) = 3 − 3x.

• on [−a, 1 + a
3
] the function f is C2 and has only one critical point, necessarily

contained in [1
3
, 2

3
], and this critical point is non-flat.
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Then f is a D-map with a flat parabolic point at 0 which satisfies Theorem 2 - one

can take U = [0, 1
3
]. Then f(U) = f([2

3
, 1]) = [0, 1]. The critical point is in the basin

of attraction of the fixed point at a, and the Julia set for f is the complement of this

basin of attraction. It is well-known and easy to show that the Julia set is of Lebesgue

measure 0, for example by showing that density points cannot exist.

We have constructed a D-map satisfying Corollary 1.5, that is, a map whose Julia

set has hyperbolic (and therefore Hausdorff) dimension equal to 1 but is of Lebesgue

measure 0.
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