Chapter 6
Hash Functions

February 15, 2010

6

Hash functions have been used in computing from the earliest days, and have
a particular relevance to cryptography - in particular to digital signatures.

Hash functions are also sometimes known as “message digest functions”
or “message compression functions”.

A hash function takes a long string of data and maps it into a pseudo-
random m-bit value. Setting 2" = N we have N possible such values. These
can be treated as integer values or as addresses of records in memory or of
1-bit records in a bit map.

6.1Uses of hash functions

1. Traditional
For spreading records (often fixed length) over a file in an ”even“ fash-
ion.

Example H(Person's Name and Address)— Points to record.

This avoids allocation space to letters of alphabet. Obviously we may
get a clash, handled as follows:

Writing: H(N + A) = Address of record

Is address slot full? — Store data there
No
l Yes

— === |

Increment address by 1
«— Look at next record slot?

Reading: H(N + A) = Address of slot

Is item in slot the required one? —— Retrieve data
Yes
| No

_)
T
T
T
T Increment address by 1
— Look at next record slot
2. Footprints
To test if some data (example: an RSA public key) has been used
before use bit-maps. H(Data) = Address of bit.

In practice use several distinct Hi(), Ha(), . . . Hg(). If bits at
H,(Data), Hs(Data), . .. Hi(Data) are all set then assume data has
been used before and (depending on the application) discard data, and
generate some new data - example: RSA moduli.

If bits at Hy(Data), Hy(Data), . .. Hy(Data) not all set place. “Ones”
in all the addressed bits and accept data. It can’t have been used before.

3. Unique Digest of Messages
N = H(Message) = Digest. Here we trust (unless we keep a bit map
of hashes) that no “hits” occur. A hit is when H(my) = H(my) for
distinct messages my, me. We want H() to be such that:

(a) Given m, and H(my) we can’t find ms such that H(m,) = H(ma).
(b) and cannot find a pair my, mgy such that H(m,) = H(my).

(a) Would allow an attacker to alter or replace an existing signed
message, and append the signature of m; to that of ms.

(b) Would allow an attacker to submit an innocent message m; for
hashing and signature; and then swap ms for m; and append the
signature of m; to mo.

Clearly a good H() randomises, so that changing a bit in the data
changes fifty percent of bits in its hash. i.e. it is similar to an encryption

2

algorithm.

Question: Could we use an encryption algorithm F(K,m) as a hash?
-With fixed, public K7

-With secret K7 -ie. a MAC

6.2 Probability of hits

This depends on N the number of slots available and ¢ the number of tries
(which have filled slots). The expected number of hits per slot = & = p.
We treat the number of hits, £ per slot as having a Poisson distribution. i.e.
Prob(k hits per slot) = ‘,‘C—Te_“. So
Prob(slot is empty) =e#* ~1—pu+ “72 .
Prob(slot is not empty) = l-e # ~ p — “72 ..
Prob(Two or more hits/slot) = 1-(e™* + pe™*)
= 1-(lp+ b+ p— pr?)
= (1*)/(2)

For (1) Traditional use we can use relatively large p since hits are not a
disaster , but merely slow down performance.

For (2) footprints, k hashes into one bit-map. (example: RSA modu-
lus). So after ¢ objects footprinted we have kt bits set (many several times)
(=)

Prob(1 bit is set) =1-e %
Prob(all k arbitrarily picked k bits are all set) —=(1-e=*#)F
P=Prob(really new data not giving
footprint which suggests it’s a repeat) = 1-(1-e F#)*

Example
=01k P pw=05 k P pw=05 k P
Up 1 0.905 Down 1 0.607 Up 1 0.819
1 2 0.967 ! 2 0.600 1 2 0.891
1 3 0.983 ! 3 0.531 1 3 0.908
l 4 0.988 ! 4 0.441 Down 4 0908
1 5 0.991 ! 5 0.348 ! 5 0.899

For (3) unique hashes for digital signatures
Prob(slot has two or more hits) ~ “72
Expected number of slots with two or more hits~ NT“Q For security that

there aren’t such slots want

Expected Number << 1
ie. (Np?)/(2) << 1
e << (2/N)V/2
ie.t << (2N)V/2
(Expected number of tries before a repeat = |/(7N)/(2) from the birthday
paradox). Say t ~ (N)2 ~ (2™)1/2 — logst ~ Z. Suppose m = 160 (bits)
and t ~ 2% hashes before a hit. 2% is infeasible (~ 10%* ops. One year
= 3 % 1016 secs)

6.3 The Structure of Hash Functions

CBC-MAC Structure
This is a basic structure:

Buffer

The function f() could be encryptor E(k;x;) where k is a key - but
for a Hash there is no secrecy and so k is a known constant. We have
yi = f(m; ® yi—1). (Clearly we need an initial value (IV), yo, and the final
Hash(message) = y,).

This scheme is not secure. A fraudster can introduce a spurious mj}, and
then choose an m],; so that we return to the original y;11 = f(mip1 + ¥i)
(and the same final resulting Hash from a modified message). Thus

Change m; to m; to give yi = f(m} + y;—1)
Change m;yq to m,, to give ¥ 4 = Yit1
or M.+ Yy =My + Y
so set mgﬂ =mip1 — Y+ f(mi +yiz1)

(yi and y;_; are observed by the fraudster and f() is supposedly known)

RIPE-MAC Structure

An improved structure is as follows:

Buffer

Output Z; = my; + f(x;) = m; + f(m; + zi1)
To attack this the fraudster changes m; to m, giving

yi = f(mj+zi)

4 = yi+m
He wants zj, ., = 271
or miy + f(miy, +2) = mipr+ f(mi +m+ fmi + zio1))
where z; = m; + f(m; + zi_1)

This cannot be solved for m;_ ; in terms of the other known quantities

(including f()).
A further possible chosen plain-text attack is like this:

The fraudster finds H; = H(m;) from message my
Hy, = H(msy) from message mso
and Hz = H(mq|ms)

where (m;|mg3) means m; concatenated by ms, a single feedback item.
Now Hjs = f(ms + Hy) + ms. Consider Hy = H(may|my) where (ma|my)
is my concatenated by a new my, a single feed-break item.

Hy = f(m4 + HQ) + my
Attacker sets my = msz+ H; — Hy
SO H4 = f(m3+H1)+m3+H1—HQ
or H4 = H3+(H1—H2)

The attacker has formed a message (mg|my) and its Hash Hy from known
(mq, Hy), (me, Hy) and (mg, Hj) without even knowing f()! The attacker
has subverted a hash which is secret.

To counter this we add a further f() before the final production of the
hash:

b Q —) 0 ——PHm)

Loop

Giving H(m) = f(my, + f(m, + 2,-1)). (Or in above notation H; =
f(mg+ f(mq+ Hs)) and the attacker cannot find H, without knowing f()).

6.4 Keyed Hash

Instead of trying to build Hash functions from encryption MAC/CBC struc-
tures we could build MACs (message authentication codes) from Hash func-
tions, by introducing a key to the Hash. For example M AC(m) = H (key :
message : key). This has certain weakness, and the recommended Keyed-

Hash structure is:

HMAC(K,message)
where K
ipad

(B
(B

opad

H(K @ opad, H(K @ ipad, message))
Key
Hex(36) repeated B times

length of block processed (in bytes))
64 — 512 bit blocks)

Hex(5C) repeated B times

Obviously any Hash function needs conventions for the message itself:

1. Does it need padding to reach a certain length?

2. Should its real length be included with the message?

3. Should the date be included?

4. Should the originator’s ID/Certificate be included? (cf KDSA Chapter

5)

6.5 The Original Hash recommended for Digital Signa-
tures was Square-Mod-n

Square

Zz' = (Z,‘_l + XZ>2 mod n
But X; = 111121, |111 121 5| 111120, [111 12505 . . |1111x,, |11 12 5)

i.e. X; is 2k bytes wide but handle k£ input bytes at a time.
An attacker wants X] =27, 1+ X, — Z/_, or

X! = (Zi1 — Z0_) + X, . (0.1)

But the z; we put in will be expanded to X! = 11112%,,| etc. So equation
?? above will only hold if (Z;_; — Z/_;) = 0000z22x20000zx2xz which has
probability (278%).

However there are clearly problems with all-zero input etc.

MDC is another proposed Hash, using DES encryption F'()

64-bit in; 128-bit out.

z1 X, (64) 72,
Ke 7 Ke
YWE" Ex ¥
Key EY Es Key

4 128 out)

t
— %
=
I

E*(Ky,) K;= K but set first 2 bits to 0 1
Ej(z) = E*(Ky,) Ko = K but set first 2 bits to 1 0
6.6

RIPE-MD is another EU developed Hash function handling 512-bit input
blocks and yielding 128-bit output. It was later extended to RIPE-160 to
give 160-bit output.

10

6.7 SHA-1 (Secure Hash Algorithm)

This is the most used hash function in cryptography. 512 input buts are pro-

cessed at a time. Output is 160 bits. Each round has as inputs HO, H1, H2, H3, H4
(Five 32-bit words of feedback=hash to date) and 512 bits of message M;. A

round contains a loop, iterated 80 times. The output of the loop is added to

the input HO, H1, H2, H3, H4 to give the new Hash-to-date.

AtoE AtoE
HO to H4 HO to H4
Equivalently:
M (512 bits)
¢ Final Output
Expand to 80 '
32 bit words
AtoE
b 4
i Loop HO. .. H4
Addin
AtoE

1. Divide 512-bit M; into sixteen 32-bit words W (0) to W (15)
2. Construct W(16) to W(79) from them

3. Set A=HO0, B=H1, C=H2, D= H3, F = H4

11

4. Loop 80t =0,79

Temp = S°(A)+ f(t,B,C,D) + E+ W (t) + K(t)
E=D, D=C, C=S5"%B), B=A, A=Temp
5. HO = HO+ A, H1 = H1+ B, H2 = H2+ C, H3 = H3+ D,
Hi=H4+F
6. 7 =7+ 1 next block of input
Notes on SHA-1
1. “4” = Addition (drop overflow)
2. S™(x) = Rotate 32-bit X n positions left
3. .
0<¢<19 f(t, B, C, D)=(B&C) OR (B&D)
20<t <39 f(t, B, C, D)=B XOR C XOR D
40< t <59 f(t, B, C, D)=(B&C) OR (B&D) OR (C&D)
60<t<79 f(t, B, C, D)=B XOR C XOR D
(& = logical AND, B=complement of B)
4. .
0<t<19 K(t)=5A827999 hex
20<t<39 K(t)=6EDIEBA1
0<t<59 K(t)=8FIBBCDC
60<t<79 K(t)=CA62C1D6
5. Initial values for H()'s are:
HO = 67452301
H1 = EFCDABS89
H2 = 98BADCFE
H3 = 10325476
H4 = (C3D281F0
6. Expansion procedure for t = 16 to 79

W(t) =S*(W(t—

3) XOR W (t—8) XOR W(t—14) XOR W (t—16))

12

7. Padding of input message to produce n * 512 bits

message Padding message length
101 ...0011 | 100...00 | <« 64 bits — |
e nxH12 bits ———

The message length field of 64 bits given the bit length of the message
(< 204).

6.8 Further Developments

SHA-1, although widely used, has certain weaknesses - probably more
theoretical than practical. Proposals for a better hash function have
been invited (in the manner of the AES project, see Chapter 2), but
as yet no selection of the short-listed or winning candidates has been
made.

13

