
Chapter 6
Hash Functions

February 15, 2010

6

Hash functions have been used in computing from the earliest days, and have
a particular relevance to cryptography - in particular to digital signatures.

Hash functions are also sometimes known as “message digest functions”
or “message compression functions”.

A hash function takes a long string of data and maps it into a pseudo-
random m-bit value. Setting 2m = N we have N possible such values. These
can be treated as integer values or as addresses of records in memory or of
1-bit records in a bit map.

6.1Uses of hash functions

1. Traditional
For spreading records (often fixed length) over a file in an ”even“ fash-
ion.

Example H(Person′s Name and Address)−→ Points to record.

This avoids allocation space to letters of alphabet. Obviously we may
get a clash, handled as follows:

Writing: H(N + A) = Address of record

1

→ Is address slot full? −→ Store data there
↑ No
↑ ↓ Y es
↑
↑ Increment address by 1
← Look at next record slot?

Reading: H(N + A) = Address of slot

→ Is item in slot the required one? −→ Retrieve data
↑ Y es
↑ ↓ No
↑
↑ Increment address by 1
← Look at next record slot

2. Footprints
To test if some data (example: an RSA public key) has been used
before use bit-maps. H(Data) = Address of bit.

In practice use several distinct H1(), H2(), . . . Hk(). If bits at
H1(Data), H2(Data), . . . Hk(Data) are all set then assume data has
been used before and (depending on the application) discard data, and
generate some new data - example: RSA moduli.

If bits at H1(Data), H2(Data), . . . Hk(Data) not all set place. “Ones”
in all the addressed bits and accept data. It can’t have been used before.

3. Unique Digest of Messages
N = H(Message) = Digest. Here we trust (unless we keep a bit map
of hashes) that no “hits” occur. A hit is when H(m1) = H(m2) for
distinct messages m1, m2. We want H() to be such that:

(a) Given m1 and H(m1) we can’t find m2 such that H(m1) = H(m2).

(b) and cannot find a pair m1, m2 such that H(m1) = H(m2).

(a) Would allow an attacker to alter or replace an existing signed
message, and append the signature of m1 to that of m2.

(b) Would allow an attacker to submit an innocent message m1 for
hashing and signature; and then swap m2 for m1 and append the
signature of m1 to m2.

Clearly a good H() randomises, so that changing a bit in the data
changes fifty percent of bits in its hash. i.e. it is similar to an encryption

2

algorithm.
Question: Could we use an encryption algorithm E(K,m) as a hash?
-With fixed, public K?
-With secret K? - i.e. a MAC

6.2 Probability of hits

This depends on N the number of slots available and t the number of tries
(which have filled slots). The expected number of hits per slot = t

N
= µ.

We treat the number of hits, k per slot as having a Poisson distribution. i.e.
Prob(k hits per slot) = µk

k!
e−µ. So

Prob(slot is empty) = e−µ ∼ 1− µ+ µ2

2
. . .

Prob(slot is not empty) = 1-e−µ ∼ µ− µ2

2
. . .

Prob(Two or more hits/slot) = 1-(e−µ + µe−µ)

= 1-(1-µ+ µ2

2
+ µ− µ2)

= (µ2)/(2)

For (1) Traditional use we can use relatively large µ since hits are not a
disaster , but merely slow down performance.

For (2) footprints, k hashes into one bit-map. (example: RSA modu-
lus). So after t objects footprinted we have kt bits set (many several times)
(µ = t

N
)

Prob(1 bit is set) =1 - e−kµ

Prob(all k arbitrarily picked k bits are all set) =(1-e−kµ)k

P=Prob(really new data not giving
footprint which suggests it’s a repeat) = 1-(1-e−kµ)k

Example
µ = 0.1 k P µ = 0.5 k P µ = 0.5 k P
Up 1 0.905 Down 1 0.607 Up 1 0.819
↓ 2 0.967 ↓ 2 0.600 ↓ 2 0.891
↓ 3 0.983 ↓ 3 0.531 ↓ 3 0.908
↓ 4 0.988 ↓ 4 0.441 Down 4 0.908
↓ 5 0.991 ↓ 5 0.348 ↓ 5 0.899

For (3) unique hashes for digital signatures

Prob(slot has two or more hits) ∼ µ2

2

Expected number of slots with two or more hits≈ N.µ2

2
. For security that

there aren’t such slots want

3

Expected Number << 1
i.e. (Nµ2)/(2) << 1

i.e. µ << (2/N)1/2

i.e. t << (2N)1/2

(Expected number of tries before a repeat =
√

(πN)/(2) from the birthday

paradox). Say t ∼ (N)1/2 ∼ (2m)1/2 → log2t ∼ m
2

. Suppose m = 160 (bits)
and t ∼ 280 hashes before a hit. 280 is infeasible (∼ 1024 ops. One year
= 3 ∗ 1016 secs)

6.3 The Structure of Hash Functions

CBC-MAC Structure
This is a basic structure:

4

The function f() could be encryptor E(k;xi) where k is a key - but
for a Hash there is no secrecy and so k is a known constant. We have
yi = f(mi ⊕ yi−1). (Clearly we need an initial value (IV), y0, and the final
Hash(message) = yn).

This scheme is not secure. A fraudster can introduce a spurious m′i, and
then choose an m′i+1 so that we return to the original yi+1 = f(mi+1 + yi)
(and the same final resulting Hash from a modified message). Thus

Change mi to m′i to give y′i = f(m′i + yi−1)
Change mi+1 to m′i+1 to give y′i+1 = yi+1

or m′i+1 + y′i = mi+1 + yi
so set m′i+1 = mi+1 − y′i + f(mi + yi−1)

(y′i and yi−1 are observed by the fraudster and f() is supposedly known)

RIPE-MAC Structure
An improved structure is as follows:

5

Output Zi = mi + f(xi) = mi + f(mi + zi−1)
To attack this the fraudster changes mi to m′i giving

y′i = f(m′i + zi−1)
z′i = y′i +m′i

He wants z′i+1 = zi+1

or m′i+1 + f(m′i+1 + z′i) = mi+1 + f(mi+1 +mi + f(mi + zi−1))
where zi = mi + f(mi + zi−1)

This cannot be solved for m′i+1 in terms of the other known quantities
(including f()).

A further possible chosen plain-text attack is like this:

The fraudster finds H1 = H(m1) from message m1

H2 = H(m2) from message m2

and H3 = H(m1|m3)

6

where (m1|m3) means m1 concatenated by m3, a single feedback item.
Now H3 = f(m3 + H1) + m3. Consider H4 = H(m2|m4) where (m2|m4)

is m2 concatenated by a new m4, a single feed-break item.

H4 = f(m4 +H2) +m4

Attacker sets m4 = m3 +H1 −H2

so H4 = f(m3 +H1) +m3 +H1 −H2

or H4 = H3 + (H1 −H2)

The attacker has formed a message (m2|m4) and its Hash H4 from known
(m1, H1), (m2, H2) and (m3, H3) without even knowing f()! The attacker
has subverted a hash which is secret.

To counter this we add a further f() before the final production of the
hash:

7

Giving H(m) = f(mn + f(mn + zn−1)). (Or in above notation H4 =
f(m4 + f(m4 +H2)) and the attacker cannot find H4 without knowing f()).

6.4 Keyed Hash

Instead of trying to build Hash functions from encryption MAC/CBC struc-
tures we could build MACs (message authentication codes) from Hash func-
tions, by introducing a key to the Hash. For example MAC(m) = H(key :
message : key). This has certain weakness, and the recommended Keyed-
Hash structure is:

HMAC(K,message) = H(K ⊕ opad, H(K ⊕ ipad, message))
where K = Key

ipad = Hex(36) repeated B times

(B = length of block processed (in bytes))
(B = 64 → 512 bit blocks)

opad = Hex(5C) repeated B times

Obviously any Hash function needs conventions for the message itself:

1. Does it need padding to reach a certain length?

2. Should its real length be included with the message?

3. Should the date be included?

4. Should the originator’s ID/Certificate be included? (cf KDSA Chapter
5)

8

6.5 The Original Hash recommended for Digital Signa-
tures was Square-Mod-n

Zi = (Zi−1 +Xi)
2 mod n

But Xi = 1111xi1L|1111xi1R|1111xi2L|1111xi2R|. . . |1111xikL|1111xikR|

i.e. Xi is 2k bytes wide but handle k input bytes at a time.
An attacker wants X ′i = Zi−1 +Xi − Z ′i−1 or

X′i = (Zi−1 − Z ′i−1) +Xi . (0.1)

9

But the x′i we put in will be expanded to X ′i = 1111x′i1L| etc. So equation
?? above will only hold if (Zi−1 − Z ′i−1) = 0000xxxx0000xxxx which has
probability (2−8k).

However there are clearly problems with all-zero input etc.
MDC is another proposed Hash, using DES encryption F ()

64-bit in; 128-bit out.

E∗1(x) = E∗(K1, x) K1 = K but set first 2 bits to 0 1
E∗2(x) = E∗(K2, x) K2 = K but set first 2 bits to 1 0

6.6

RIPE-MD is another EU developed Hash function handling 512-bit input
blocks and yielding 128-bit output. It was later extended to RIPE-160 to
give 160-bit output.

10

6.7 SHA-1 (Secure Hash Algorithm)

This is the most used hash function in cryptography. 512 input buts are pro-
cessed at a time. Output is 160 bits. Each round has as inputsH0, H1, H2, H3, H4
(Five 32-bit words of feedback=hash to date) and 512 bits of message Mi. A
round contains a loop, iterated 80 times. The output of the loop is added to
the input H0, H1, H2, H3, H4 to give the new Hash-to-date.

1. Divide 512-bit Mi into sixteen 32-bit words W (0) to W (15)

2. Construct W (16) to W (79) from them

3. Set A = H0, B = H1, C = H2, D = H3, E = H4

11

4. Loop 80 t = 0, 79
Temp = S5(A) + f(t, B, C,D) + E +W (t) +K(t)
E = D, D = C, C = S30(B), B = A, A = Temp

5. H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D,
H4 = H4 + E

6. i = i+ 1 next block of input

Notes on SHA-1

1. “+” = Addition (drop overflow)

2. Sn(x) = Rotate 32-bit X n positions left

3. .

0≤ t ≤ 19 f(t, B, C, D)=(B&C) OR (B&D)
20≤ t ≤ 39 f(t, B, C, D)=B XOR C XOR D
40≤ t ≤ 59 f(t, B, C, D)=(B&C) OR (B&D) OR (C&D)
60≤ t ≤ 79 f(t, B, C, D)=B XOR C XOR D

(& = logical AND, B=complement of B)

4. .

0≤ t ≤ 19 K(t)=5A827999 hex
20≤ t ≤ 39 K(t)=6ED9EBA1
40≤ t ≤ 59 K(t)=8F1BBCDC
60≤ t ≤ 79 K(t)=CA62C1D6

5. Initial values for H()′s are:
H0 = 67452301
H1 = EFCDAB89
H2 = 98BADCFE
H3 = 10325476
H4 = C3D281F0

6. Expansion procedure for t = 16 to 79
W (t) = S1(W (t−3) XOR W (t−8) XOR W (t−14) XOR W (t−16))

12

7. Padding of input message to produce n ∗ 512 bits

message Padding message length
|101 . . . 0011 | 100. . . 00 | ← 64 bits → |
←−←−←− n∗512 bits −→−→−→

The message length field of 64 bits given the bit length of the message
(< 264).

6.8 Further Developments

SHA-1, although widely used, has certain weaknesses - probably more
theoretical than practical. Proposals for a better hash function have
been invited (in the manner of the AES project, see Chapter 2), but
as yet no selection of the short-listed or winning candidates has been
made.

13

