
Chapter 12
Linear Crypt Analysis

February 15, 2010

12

Similar to Differential Crypt Analysis (DCA) Linear Crypt Analysis (LCA)
is a technique for attacking encryption algorithms of many rounds with sub-
keys entering linearly in each round. Like DCA it exploits non-uniformities
in the structure of a round reducing them to linear expressions of unequal
probabilities. A sufficiently large number of input/output pairs (known or
chosen) can reveal the effect of these inequalities and enable conclusions
about the sub-keys to be drawn.

LCA was first described by Mitsura Matsui in 1992, (Computer and Infor-
mation Systems Laboratory Mitsubishi Electric Corporation, Japan). Mat-
sui used LCA to describe an attack on DES. The discussion that follows here
is directly taken from his original paper, and uses his notation.

12.1

The general idea of LCA is to find a linear approximation to a cryptographic
algorithm, which holds with a certain probability p 6= 1

2
, of the form

P[i1i2...ir]⊕K[l1l2 . . . ls] = C[j1j2 . . . jt] (0.1)

Here P is the plain-text, C is the cypher-text, and K is the key (usually a
subset of the sub-keys of a multi-round cypher).

The notation P [i1i2 . . . ir] means the XOR sum of bits i1i2...ir of P (that
is P [i1]⊕ P [i2] . . .⊕ P [ir] = 0 or 1).

1

If such an expression as equation ?? can be found then using N known
plain-texts and cypher-text pairs we would expect equation ?? to be satisfied

on Np occasions (±2.58
√

Np(1− p)) for one percent confidence, assuming a

binomial distribution).
This enables one to decide, given sufficiently large N, what is the value

of K[] given P [] and C[]. For example, if p > 1
2

so that equation ?? is on
average true, but P [] and C[] are found to be on average different (example:
P [] = 1 and C[] = 0) then we can plausibly conclude that K[] = 1. This
would give us a relationship between key-bits effectively reducing the key
space by one bit. We shall see how we can estimate many key bits later.

12.2

The method for producing approximations like equation ?? is to find such
approximations for single rounds and then combine all the rounds together
in such a way as to eliminate all intermediate data values, leaving only P [],
C[] and key bits (from some or all of the rounds).

As an example consider the DES f() function. Permuting bits does not
affect the XOR sum of their values. The only non-linear operations which
need to be linearly approximated are the S-boxes. Consider S1, and the
input bit corresponding to 10HEX . (See table 11.1 of Chapter 11) The XOR
of the four bits of the output of S1 (corresponding to OFHEX) is equal to
the input bit only for fourteen out of the sixty-four possible input patterns
for S1. But the input to S1 is the XOR of a data bit P [i] and a key bit
K[i]; so if P [i] = C[j1j2j3j4] (where C[j1j2j3j4] means the XOR of the four
bit output of S1) we may assume K[i] = 1 with high probability. (It can be
shown that for high confidence, if the probability of an expression is p we
need Order(1

2
− p)−2 observations, approximately if p is very small.)

Of course in DES, and other algorithms, one must keep track of bits as
they are moved around by permutations and expansions in functions such as
DES f(). But the essential point is the fact that the S-boxes allow certain
linear approximations with probabilities sufficiently different from 32

64
= 1

2
.

12.3

Putting together different rounds is done by assuming that the linear approx-
imations of the individual rounds are simultaneously all true. If they are,
then the linear equations for the relevant rounds may be XORed together
to form a single linear approximation for the whole algorithm; which is true
with probability

2

(1)/(2) + 2n−1 ∏n
i=1(pi− 1

2
) (0.2)

if there are n stages and the probability of the linear approximation for the
ith stage being true is pi. (This expression is the probability of the XOR sum
of n random variables being zero, if their individual probabilities of being
zero are pi. It is easily proven by induction on n.)

We use as an example five round DES. Note that the identification of
the bits is as in Matsui’s paper: namely the least significant bit is bit 0,
the most significant in a 32-bit word is then bit 31. (DES is other way
round). Note also that the example takes into account the E(expansion)
and P(permutation) of the DES f − function; but ignores the initial and
final permutations of the complete algorithm. The linear approximations are:

Probability Round S-box
22
64

Round 1 PH [15] + X2[15] + PL[27, 28, 30, 31] = K1[42, 43, 45, 46] S1
12
64

Round 2 PL[7, 18, 24, 29] + X3[7, 18, 24, 29] + X2[15] = K2[22] S5
12
64

Round 4 X3[7, 18, 24, 29] + CL[7, 18, 24, 29] + X4[15] = K4[22] S5
22
64

Round 5 CH [15] + X4[15] + CL[27, 28, 30, 31] = K5[42, 43, 45, 46] S1

PH , CH are the high (left) half of P, C; PL, CL the low (right) halves. Xi is
the input to f() at round i.

The input/output masks are for S1 (011011,0100) and for S5 (010000,1111)
and the associated probabilities that the equations hold are 22

64
and 12

64
respec-

tively as can be deduced from Table 6 of DES.
If all these expressions are true simultaneously we can XOR them to-

gether to get a linear approximation for five-round DES:

PH [15]+PL[7, 18, 24, 27, 28, 29, 30, 31]+CH[15]+CL[7, 18, 24, 27, 28, 29, 30, 31] =
K1[42, 43, 45, 46]+K2[22]+K4[22]+K5[42, 43, 45, 46] (0.3)

This holds with probability of 0.519, using expansion in equation ??.

3

12.3.1 5-Round DES - linear Approximation

12.4

Continuing with the example of five round DES we note that if we are suc-
cessful (using (1

2
- 0.519)−2) ∼ 2770 known plain-texts) we find out a linear

relation between key bits; namely the right hand side of (3) = 0 or 1. In
DES these are sub-key bits, easily related back to the user key; but still,
effectively only one key-bit has been found.

However we may find more key-bits by reforming (3) as follows: do not
approximate the last round but rather use the f() function with the known
CL bits, and all possible values for the six relevant key-bits of K5 which
affect f(CL,K5)[15].

Equation ?? becomes:

4

PH [15] + PL[7, 18, 24, 27, 28, 29, 30, 31] + CH[15] + CL[7, 18, 24, 29]+
f(CL,K5)[15] = K1[42, 43, 45, 46] + K2[22] + K4[22] (0.4)

If the correct key-bits at K5 are guessed, namely those that correspond to
the observed CH[15], then the left hand side of equation ?? will have a more
pronounced bias away from N

2
after N observations. Thus 64 tables are re-

quired, in which to count the number (T) of times the left hand side of ??
is zero, one table for each value of K5. The value of K5 which maximises
|T − N

2
|, the difference between T and N

2
, is chosen. K[] is then estimated

as before, using the value of p for four (in general (n − 1)) rounds; p being
either < 1

2
or > 1

2
.

The theory shows that this method requires more tests, that is a larger
Ni but it gives seven key bits instead of one.

Furthermore DES decrypts as well as encrypts. Given plain-text/cypher-
text pairs it is possible to perform the LCA backwards and (in the case of
five rounds) find seven further key-bits, six of which are from K1, which is
the last decryption round key. In all we now have fourteen out of the fifty-six
key-bits and it is easy to find the remainder (example: by exhaustive search).

LCA is a powerful tool for attacking cyphers which contain non-linear
functions which have certain non-random characteristics. The linearisation
of these functions (such as S-boxes) is avoided or discovered usually by com-
puter search. A good cypher will ensure that the probability of such linear
relationships is almost random (that is 1

2
) and any proposed design should

be tested exhaustively for this. If this is so, and if the number of rounds is
large; then N (the number of tests that an attacker needs to perform) will
be larger than that required for an exhaustive search of the key-space.

5

