The Cantor set is uncountable

February 13, 2009

Every $x \in[0,1]$ has at most two ternary expansions with a leading zero; that is, there are at most two sequences $\left(d_{n}\right)_{n \geq 1}$ taking values in $\{0,1,2\}$ with

$$
x=0 . d_{1} d_{2} d_{3} \ldots \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} d_{n} \cdot 3^{-n} .
$$

For example, $\frac{1}{3}=0.10000 \cdots=0.022222 \ldots$. Moreover, this is essentially the only way in which ambiguity can arise: if $0 . d_{1} d_{2} d_{3} \ldots$ and $0 . e_{1} e_{2} e_{3} \ldots$ are two different ternary expansions of x then writing $n=\min \left\{m \geq 1: d_{m} \neq e_{m}\right\}$, if $d_{n}<e_{n}$ then we necessarily have $e_{n}=d_{n}+1, d_{n+1}=d_{n+2}=\cdots=2$ and $e_{n+1}=e_{n+2}=\cdots=0$. In particular, either e_{n} or d_{n} is equal to 1 ; so there is at most one ternary expansion of x which does not contain a 1 .

The Cantor set C is defined by

$$
\begin{aligned}
C_{0} & =[0,1], \\
C_{1} & =\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right], \\
C_{2} & =\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right], \\
& \vdots \\
C & =\bigcap_{n=0}^{\infty} C_{n} .
\end{aligned}
$$

Observe that

$$
C_{n}=\left\{0 . d_{1} d_{2} d_{3} \ldots: d_{j} \in\{0,2\} \text { for } 1 \leq j \leq n\right\}
$$

is the set of all numbers in $[0,1]$ which have a ternary expansion containing only the digits 0 or 2 in the first n places. So C is the set of all numbers in $[0,1]$ which have at least one ternary expansion containing only the digits 0 and 2. Moreover, from the remarks above it follows that each $x \in C$ has one and only one ternary expansion using only 0 s and 2 s .

Recall that a set X is countable if there is a sequence of elements of X which exhausts it; that is, if X can be written as

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

Otherwise, we say that X is uncountable.

Theorem. The Cantor set is uncountable.
Proof. We use a method of proof known as Cantor's diagonal argument. Suppose instead that C is countable, say $C=\left\{x^{1}, x^{2}, x^{3}, x^{4}, \ldots\right\}$. Write $x^{i}=0 . d_{1}^{i} d_{2}^{i} d_{3}^{i} d_{4}^{i} \ldots$ as a ternary expansion using only 0 s and 2 s . Then the elements of C all appear in the list:

$$
\begin{aligned}
x^{1} & =0 . d_{1}^{1} d_{2}^{1} d_{3}^{1} d_{4}^{1} \ldots \\
x^{2} & =0 . d_{1}^{2} d_{2}^{2} d_{3}^{2} d_{4}^{2} \ldots \\
x^{3} & =0 . d_{1}^{3} d_{2}^{3} d_{3}^{3} d_{4}^{3} \ldots \\
x^{4} & =0 . d_{1}^{4} d_{2}^{4} d_{3}^{4} d_{4}^{4} \ldots
\end{aligned}
$$

Let $\left(d_{1}, d_{2}, d_{3}, d_{4}, \ldots\right)$ be the sequence that differs from the diagonal sequence $\left(d_{1}^{1}, d_{2}^{2}, d_{3}^{3}, d_{4}^{4}, \ldots\right)$ in every entry, so that

$$
d_{j}= \begin{cases}0 & \text { if } d_{j}^{j}=2 \\ 2 & \text { if } d_{j}^{j}=0\end{cases}
$$

The ternary expansion $0 . d_{1} d_{2} d_{3} d_{4} \ldots$ does not appear in the list above since $d_{j} \neq d_{j}^{j}$. Now $x=0 . d_{1} d_{2} d_{3} d_{4} \ldots$ is in C, but no element of C has two different ternary expansions using only 0 s and 2 s. So x does not appear in the list above, which is a contradiction. So C must be uncountable.

