1M01 Mathematical Methods 2010-11

Calculus tutorial exercise sheet 8

1. Simplify and then differentiate the following with respect to x :
(a) $e^{2 \ln (x)}$
(b) $\sqrt{e^{1+2 x^{3}}}$
(c) $\ln \left(\frac{\sqrt{x}}{\cos (x)}\right)$

Hint: these are easier to do if you simplify before differentiating!
Remember that $\frac{d}{d x}\left(e^{x}\right)=e^{x}$, and $\frac{d}{d x}(\ln (x))=\frac{1}{x}$.
2. Compute:

Notes: 66,67
(a) $\int e^{-x / 2}+1 d x$
(b) $\int_{0}^{\ln (2)} \frac{2}{e^{x}} d x$
(c) $\int t e^{3 t} d t$

Hint: for (c), try integration by parts with $u=t$ and $d v=e^{3 t} d t$.
3. The size of a population of bacteria is modelled by $P(t)=10^{8} \times e^{0.02 t}$ where t is time, in hours.
(a) Find the initial population and the generation time.
(b) When does the population reach 10^{9} bacteria?
4. The radioactive element Carbon- 14 has a half-life of 5750 years. The amount of Carbon-14 in a fossil decays according to the differential equation

$$
\frac{d N}{d t}=-k N
$$

where $N=N(t)$ is the amount of Carbon-14 present in the fossil at time t, measured in years since the fossilised organism died, and k is a positive constant.
Find the value of the constant k, and compute the age of a fossil which has lost 95% of its Carbon-14.

