1M01 Mathematical Methods 2010-11

Calculus tutorial exercise sheet 5

1. Simplify the following expressions, writing your answers using powers rather than roots.
(a) $\sqrt{\frac{8 x^{2}+8 y^{2}}{2}}$
(b) $\left(\sqrt[4]{81 x^{3} y^{6}}\right)^{3}$
2. (a) Find the derivatives of \sqrt{x}, and $\frac{1}{\sqrt{x}}$.
(b) Find $\frac{d}{d x}\left(4 \sqrt{x^{3}}-\frac{1}{x}\right)$.
(c) Compute $\frac{d}{d t}\left(\left(t^{3}+4\right)^{2010}\right)$.
(d) What is the slope of the tangent line to $y=\left(2 x^{9}-x\right)^{1 / 3}$ at $x=1$?
3. (a) Compute $\int \frac{5 t^{1 / 5}}{2}-\frac{10}{t^{3}} d t$.

Notes: 47-48
(b) Find $\int_{1}^{2} 3 x^{1.6}+2 d x$.
(c) Find a function $f(x)$ so that $f^{\prime}(x)=x \sqrt{x^{2}+1}$ and $f(0)=1$.
(d) Compute $\int \frac{-2 x^{2}}{\left(4 x^{3}-1\right)^{2}} d x$.
4. A model for the cardiovascular system of mammals makes the following predictions about capillary blood vessels. Here, w is the mammal's weight, r is the typical radius of a capillary blood vessel and n is the total number of capillary blood vessels.

- r is directly proportional to $\sqrt[12]{w}$
- n is directly proportional to $w^{5 / 8}$

Explain why n is directly proportional to r^{s} for some power s, and find s.

