7 Exponential and logarithmic functions

7.1 The exponential function
Textbook: Section 4.1

f(x+1)
f(x)
pending orx. This means that for any; if you increasex by 1, you multiply the
y-value f (x) by k to get the new valuef, (x+1).
For exampley = 2* is has exponential growth, with= 2.

is a constank > 1, not de-

A function f(x) hasexponential growthf

Example 7.1.1.The populatiorP(t) of a culture of bacteriahours after the start
of an experiment is given by

P(t) = 1000 1.1".

(a) What is the initial population?
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(b) Explain whyP(t) has exponential growth by showing that the population

increases by 10% every hour.

(c) A different sample of bacteria has an initial populaid®00 and increases
by 25% every hour. Suggest a function to model this popuiatio
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Example 7.1.2. The sketch below shows the graphsyof a* for a= 1.5 and
a= 3. Add the graph of = 2*. What happens to the slope of the tangent line to

each of these curves at= 0 asa increases?

Definition 7.1.3. The constangis the real number with the property that the graph
of y = € has a tangent line of slope 1yt 0. The functiony = €, sometimes
writteny = exp(x), is calledthe exponential function

From the discussion above, we see thtbetween 2 and 3. In fact,
e=2.7182818...

Your calculator will tell you this if you ask it to computexp (1) or e?.



The laws of exponents we discussed on page 43 apply in plartita the

function f(x) = e
Theorem 7.1.4(Power laws fo*). For any real numbers x and y,
e
1. & &=€eVYand— =&Y
e
2. (Y =¢e¥
Example 7.1.5.Simplify €*(e%)2.

X\5
Example 7.1.6.Simplify € - {/ (G:_)Z .

Theorem 7.1.7(The derivative oE¥). %((ex) =€

By the chain rule, we also have:

Theorem 7.1.8(The derivative o). If u depends on x, theéj;((e“) =e'. du

dx’
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Example 7.1.9.Find the derivatives of:
() e (i) ()2 (i) cos(eX)  (iv) eV*¥ 1.

Theorem 7.1.10(The antiderivative o€*). /exdx: e +C.

2
Example 7.1.11.Find/ g'dx
0
Example 7.1.12.What is/ezxdx?
Example 7.1.13.What is/xex2d><?

Example 7.1.14.What is/x3e‘x2d>(?
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7.2 Logarithms
Textbook: Section 4.2

Definition 7.2.1. If x> 0 then thenatural logarithmof x is the real numbey with
e = x. We writey = In(x) ory = Inx. We have

y=In(X) < & =x for any real numbey and anyx > 0.

This defines a functiog = In(x) which is defined fox > 0, and is undefined for
x<0.

Example 7.2.2.Given the graph off = € on the left, swapx andy to get the
graph ofx = In(x). What are Iii1) and In2)? What are If—1) and In(0)?

y y

Example 7.2.3.Simplify €"®) ande?n(®).

Example 7.2.4.Simplify In(e¥) and Ine~3¢ . ).

Example 7.2.5.For which real numbers is the functionf (x) = 2+ % In(3—x)
defined? What aré(6) andf (—6)?
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Using the properties of* discussed in the previous section, we can deduce
some properties of [ix).

Theorem 7.2.6(Properties of Ix)). For any positive numbers a and b and any
real number K,

1. In(ab) =In(a) +In(b) andin (g) =In(a) —In(b)

2. In(a¥) =k-In(a)

3. In(é¥) = k (so, for exampldn(e) = In(e!) = 1 andIn(1) = In(e”) = 0).
4. én@ =g

Why is In(x) an important function important for scientists?

One reason lfx) is important is that it lets you solve equations where the
unknown variable is in a power, such as=210.

Here is another reason you might be familiar with. In manyagibns, one
guantity might be directly proportional to a power of anatl®o if x andy
are the quantities of interest, then you expect yhatcx™ for some powem
and a positive constaut To find the values of the constartandm, you
could imagine doing an experiment to get some valueg, fprThen take In
of all of your values: if we writéY = In(y) andX = In(x) then we have

y=k<¢ = In(y) = In(kx¥) = In(c) + min(x) = Y =mX+C

whereC = In(c). So if you plotY againstX, you expect to get a straight
line with slopem andY -interceptC. By measuringn andC (and using

¢ = €°) you have found the constants in the formula you're realigriested
in,y=cx™

This is why “log-log” plots are so useful.

Example 7.2.7.Solve the equation”2= 10.

Example 7.2.8.Solve the equation [5x~2/3) = In(25).
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If y=In(x) thene = x, so differentiating both sides of this equation with
respect toc using the chain rule gives

d dy
&(ey) = so =
Theorem 7.2.9(The derivative of Ifx)).
d

1
E((In(x)) = for x > 0.

Applying the chain rule, we deduce:
Theorem 7.2.10.If u depends on x, then

d 1 du
&(In(u)) = dx

Example 7.2.11.Find the derivatives of If#x) and Inv/x2 + 1).

Example 7.2.12.(i) Let a be a positive constant with = 1. Use the equation
a=€&"@ to write & in terms ofe¥, and hence find the derivati\é%((ax).

(ii) What is the slope of the tangent line to the cupve 2* atx = 0?



7.3 The uninhibited growth model ¢ = kP
Textbook: Section 4.3

Let P = P(t) be the size of a population at tinhelf the population growth rate is
directly proportional to the population size, then thera nstank > 0 with

dP_
dt
[Another way to write this i$”’ (t) = kP(t).]

kP,

Theorem 7.3.1(The solutions tog%: = ky). Let k be any real constant. The func-
tions y= y(x) which satisfy

dy

ax

are precisely the functions which can be written
y = ce*

where c is a constant. In fact, c is the value of y at Q.

The equatlond—z = ky is called adifferential equationsince it involves the

derivative of a function. The theorem tells us all the fuoietly = y(x) which sat-
isfy the differential equation. These functions aredbtutionsto this differential
equation.

Example 7.3.2.Find a functionf (x) so thatf’(x) = 4f(x) and f (0) = 25.

Example 7.3.3.Show that the functiofP(t) = 1000x 1.1 from Example 7.1.1
can be rewritten in the form®(t) = ce& for some constants andk, and write
down a differential equation whidR satisfies.



, . P
Returning to our population mode%—t = kP for some constarit > 0. The

theorem tells us that
P(t) = Poe

for some constari®,.

We say thaP(t) = Py grows exponentially

Definition 7.3.4. Suppose thaP(t) grows exponentially wittP(t) = Pyekt for
some constant) andk > 0. Thegeneration timeor doubling time Tis the time
it takesP to double in size from its initial valug,.

In summary:
In(2)
T=—-=
* Kk

e whenevet increases by the generation tifhe
the value ofP(t) doubles.

12
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Example 7.3.5.1f P(t) = 10- €, what is the generation time?

Example 7.3.6.A population of sizéP(t) grows exponentially from an initial pop-
ulation of 200. If the population doubles every 7 days, fincgtgnation forP(t).

Example 7.3.7.A rabbit populatiorP(t) grows according to
P(t) = 400x 1.03%

wheret is the time, in months, since the population was first measufend the
doubling time for this population, and find the populatioowth rate after one
month.
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7.4 Exponential decay
Textbook: Section 4.4

Radioactive isotopes decay exponentially.Nift) is the quantity of a given ra-

dioactive isotope in a sample, then the rate of deeaa't—, is directly proportional
to N(t). So there is a constakt> 0 with
dN
— = —kN.
dt

By Theorem 7.3.1, we hawé(t) = Noe ! for some constaritl.

Definition 7.4.1. Suppose thal = N(t) decays exponentially accordingit) =
Noe X for some constark > 0. Thehalf life T is the time it takedN to halve in
size from its initial valueNp.

Just as for the doubling time, it's easy to see that:
_In@)
-k

e whenevet increases by the half lif€,
the value ofN(t) halves.

o T

Example 7.4.2.(i) If N(t) = 8 x 10*? x e 0002 wheret is time in days, what is
the half life?

(i) When isN(t) equal to 2< 10122

(iii) How long will it take beforeN(t) is less than 1%?
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Example 7.4.3.The radioactive element Carbon-14 has a half-life of 5750s/ea
The amountN(t) of Carbon-14 in a sample at timemeasured in years, decays
according to the differential equation

dN
dt
wherek is some positive constant.

(i) State an equation fdX(t), and sketch a graph showing the behaviouNdf)
ast increases. Mark the half-life &i(t) on your sketch.

—kN

(i) Which of the following three statements is true, and whis false? Explain
your answers.

1. The quantity of Carbon-14 in a sample is directly propowido 1/t.

2. The rate of decay of Carbon-14 in a sample is directly priogeal toN(t).

3. After 2x 5750= 11,500 years, all of the Carbon-14 in a sample will have
decayed.

(i) Compute the age of a sample which has lost 60% of its Caibtin



