7 Exponential and logarithmic functions

7.1 The exponential function

Textbook: Section 4.1

A function $f(x)$ has exponential growth if $\frac{f(x+1)}{f(x)}$ is a constant $k>1$, not depending on x. This means that for any x, if you increase x by 1 , you multiply the y-value $f(x)$ by k to get the new value, $f(x+1)$.

For example, $y=2^{x}$ is has exponential growth, with $k=2$.

Example 7.1.1. The population $P(t)$ of a culture of bacteria t hours after the start of an experiment is given by

$$
P(t)=1000 \cdot 1.1^{t} .
$$

(a) What is the initial population?
(b) Explain why $P(t)$ has exponential growth by showing that the population increases by 10% every hour.
(c) A different sample of bacteria has an initial population of 500 and increases by 25% every hour. Suggest a function to model this population.

Example 7.1.2. The sketch below shows the graphs of $y=a^{x}$ for $a=1.5$ and $a=3$. Add the graph of $y=2^{x}$. What happens to the slope of the tangent line to each of these curves at $x=0$ as a increases?

Definition 7.1.3. The constant e is the real number with the property that the graph of $y=e^{x}$ has a tangent line of slope 1 at $x=0$. The function $y=e^{x}$, sometimes written $y=\exp (x)$, is called the exponential function.

From the discussion above, we see that e is between 2 and 3. In fact,

$$
e=2.7182818 \ldots
$$

Your calculator will tell you this if you ask it to compute $\exp (1)$ or e^{1}.

The laws of exponents we discussed on page 43 apply in particular to the function $f(x)=e^{x}$:

Theorem 7.1.4 (Power laws for e^{x}). For any real numbers x and y,

1. $e^{x} \cdot e^{y}=e^{x+y}$ and $\frac{e^{x}}{e^{y}}=e^{x-y}$
2. $\left(e^{x}\right)^{y}=e^{x y}$

Example 7.1.5. Simplify $e^{x}\left(e^{-x}\right)^{2}$.

Example 7.1.6. Simplify $e^{2} \cdot \sqrt{\frac{\left(e^{3 x}\right)^{5}}{e^{-x}}}$.

Theorem 7.1.7 (The derivative of $\left.e^{x}\right) . \quad \frac{d}{d x}\left(e^{x}\right)=e^{x}$.

By the chain rule, we also have:
Theorem 7.1.8 (The derivative of $\left.e^{u}\right)$. If u depends on x, then $\frac{d}{d x}\left(e^{u}\right)=e^{u} \cdot \frac{d u}{d x}$.

Example 7.1.9. Find the derivatives of:
(i) $e^{-2 x}$
(ii) $\left(e^{\sin (x)}\right)^{2}$
(iii) $\cos \left(e^{x}\right)$
(iv) $e^{\sqrt{x^{2}+1}}$.

Theorem 7.1.10 (The antiderivative of e^{x}). $\quad \int e^{x} d x=e^{x}+C$.
Example 7.1.11. Find $\int_{0}^{2} e^{x} d x$.

Example 7.1.12. What is $\int e^{-2 x} d x$?

Example 7.1.13. What is $\int x e^{-x^{2}} d x$?

Example 7.1.14. What is $\int x^{3} e^{-x^{2}} d x$?

7.2 Logarithms

Textbook: Section 4.2
Definition 7.2.1. If $x>0$ then the natural logarithm of x is the real number y with $e^{y}=x$. We write $y=\ln (x)$ or $y=\ln x$. We have

$$
y=\ln (x) \Longleftrightarrow e^{y}=x \quad \text { for any real number } y \text { and any } x>0
$$

This defines a function $y=\ln (x)$ which is defined for $x>0$, and is undefined for $x \leq 0$.
Example 7.2.2. Given the graph of $y=e^{x}$ on the left, swap x and y to get the graph of $x=\ln (x)$. What are $\ln (1)$ and $\ln (2)$? What are $\ln (-1)$ and $\ln (0)$?

Example 7.2.3. Simplify $e^{\ln (x)}$ and $e^{2 \ln (x)}$.

Example 7.2.4. Simplify $\ln \left(e^{x}\right)$ and $\ln \left(e^{-3 x^{2}} \cdot e^{4}\right)$.

Example 7.2.5. For which real numbers x is the function $f(x)=2+\frac{1}{2} \ln (3-x)$ defined? What are $f(6)$ and $f(-6)$?

Using the properties of e^{x} discussed in the previous section, we can deduce some properties of $\ln (x)$.

Theorem 7.2.6 (Properties of $\ln (x))$. For any positive numbers a and b and any real number k,

1. $\ln (a b)=\ln (a)+\ln (b)$ and $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$
2. $\ln \left(a^{k}\right)=k \cdot \ln (a)$
3. $\ln \left(e^{k}\right)=k$ (so, for example, $\ln (e)=\ln \left(e^{1}\right)=1$ and $\ln (1)=\ln \left(e^{0}\right)=0$).
4. $e^{\ln (a)}=a$

Why is $\ln (x)$ an important function important for scientists?

One reason $\ln (x)$ is important is that it lets you solve equations where the unknown variable is in a power, such as $2^{x}=10$.

Here is another reason you might be familiar with. In many situations, one quantity might be directly proportional to a power of another. So if x and y are the quantities of interest, then you expect that $y=c x^{m}$ for some power m and a positive constant c. To find the values of the constants c and m, you could imagine doing an experiment to get some values for x, y. Then take \ln of all of your values: if we write $Y=\ln (y)$ and $X=\ln (x)$ then we have

$$
y=k x^{s} \Longrightarrow \ln (y)=\ln \left(k x^{s}\right)=\ln (c)+m \ln (x) \Longrightarrow Y=m X+C
$$

where $C=\ln (c)$. So if you plot Y against X, you expect to get a straight line with slope m and Y-intercept C. By measuring m and C (and using $c=e^{C}$) you have found the constants in the formula you're really interested in, $y=c x^{m}$.

This is why "log-log" plots are so useful.

Example 7.2.7. Solve the equation $2^{x}=10$.

Example 7.2.8. Solve the equation $\ln \left(5 x^{-2 / 3}\right)=\ln (25)$.

If $y=\ln (x)$ then $e^{y}=x$, so differentiating both sides of this equation with respect to x using the chain rule gives

$$
\frac{d}{d x}\left(e^{y}\right)=\quad \text { so } \frac{d y}{d x}=
$$

Theorem 7.2.9 (The derivative of $\ln (x)$).

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x} \quad \text { for } x>0
$$

Applying the chain rule, we deduce:
Theorem 7.2.10. If u depends on x, then

$$
\frac{d}{d x}(\ln (u))=\frac{1}{u} \cdot \frac{d u}{d x} .
$$

Example 7.2.11. Find the derivatives of $\ln (4 x)$ and $\ln \left(\sqrt{x^{2}+1}\right)$.

Example 7.2.12. (i) Let a be a positive constant with $a \neq 1$. Use the equation $a=e^{\ln (a)}$ to write a^{x} in terms of e^{x}, and hence find the derivative $\frac{d}{d x}\left(a^{x}\right)$.
(ii) What is the slope of the tangent line to the curve $y=2^{x}$ at $x=0$?

7.3 The uninhibited growth model $\frac{d P}{d t}=k P$

Textbook: Section 4.3
Let $P=P(t)$ be the size of a population at time t. If the population growth rate is directly proportional to the population size, then there is a constant $k>0$ with

$$
\frac{d P}{d t}=k P
$$

[Another way to write this is $P^{\prime}(t)=k P(t)$.]
Theorem 7.3.1 (The solutions to $\frac{d y}{d x}=k y$). Let k be any real constant. The functions $y=y(x)$ which satisfy

$$
\frac{d y}{d x}=k y
$$

are precisely the functions which can be written

$$
y=c e^{k x}
$$

where c is a constant. In fact, c is the value of y at $x=0$.

The equation $\frac{d y}{d x}=k y$ is called a differential equation since it involves the derivative of a function. The theorem tells us all the functions $y=y(x)$ which satisfy the differential equation. These functions are the solutions to this differential equation.

Example 7.3.2. Find a function $f(x)$ so that $f^{\prime}(x)=4 f(x)$ and $f(0)=25$.

Example 7.3.3. Show that the function $P(t)=1000 \times 1.1^{t}$ from Example 7.1.1 can be rewritten in the form $P(t)=c e^{k t}$ for some constants c and k, and write down a differential equation which P satisfies.

Returning to our population model: $\frac{d P}{d t}=k P$ for some constant $k>0$. The theorem tells us that

$$
P(t)=P_{0} e^{k t}
$$

for some constant P_{0}.

We say that $P(t)=P_{0} e^{k t}$ grows exponentially.

Definition 7.3.4. Suppose that $P(t)$ grows exponentially with $P(t)=P_{0} e^{k t}$ for some constants P_{0} and $k>0$. The generation time, or doubling time T is the time it takes P to double in size from its initial value P_{0}.

In summary:

- $T=\frac{\ln (2)}{k}$
- whenever t increases by the generation time T, the value of $P(t)$ doubles.

Example 7.3.5. If $P(t)=10 \cdot e^{5 t}$, what is the generation time?

Example 7.3.6. A population of size $P(t)$ grows exponentially from an initial population of 200. If the population doubles every 7 days, find an equation for $P(t)$.

Example 7.3.7. A rabbit population $P(t)$ grows according to

$$
P(t)=400 \times 1.03^{2 t}
$$

where t is the time, in months, since the population was first measured. Find the doubling time for this population, and find the population growth rate after one month.

7.4 Exponential decay

Textbook: Section 4.4
Radioactive isotopes decay exponentially. If $N(t)$ is the quantity of a given radioactive isotope in a sample, then the rate of decay, $-\frac{d N}{d t}$, is directly proportional to $N(t)$. So there is a constant $k>0$ with

$$
\frac{d N}{d t}=-k N
$$

By Theorem 7.3.1, we have $N(t)=N_{0} e^{-k t}$ for some constant N_{0}.

Definition 7.4.1. Suppose that $N=N(t)$ decays exponentially according to $N(t)=$ $N_{0} e^{-k t}$ for some constant $k>0$. The half life T is the time it takes N to halve in size from its initial value N_{0}.

Just as for the doubling time, it's easy to see that:

- $T=\frac{\ln (2)}{k}$
- whenever t increases by the half life T, the value of $N(t)$ halves.

Example 7.4.2. (i) If $N(t)=8 \times 10^{12} \times e^{-0.003 t}$ where t is time in days, what is the half life?
(ii) When is $N(t)$ equal to 2×10^{12} ?
(iii) How long will it take before $N(t)$ is less than 10^{6} ?

Example 7.4.3. The radioactive element Carbon-14 has a half-life of 5750 years. The amount $N(t)$ of Carbon-14 in a sample at time t, measured in years, decays according to the differential equation

$$
\frac{d N}{d t}=-k N
$$

where k is some positive constant.
(i) State an equation for $N(t)$, and sketch a graph showing the behaviour of $N(t)$ as t increases. Mark the half-life of $N(t)$ on your sketch.
(ii) Which of the following three statements is true, and which is false? Explain your answers.

1. The quantity of Carbon-14 in a sample is directly proportional to $1 / t$.
2. The rate of decay of Carbon-14 in a sample is directly proportional to $N(t)$.
3. After $2 \times 5750=11,500$ years, all of the Carbon- 14 in a sample will have decayed.
(iii) Compute the age of a sample which has lost 60% of its Carbon-14.
