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7 Exponential and logarithmic functions

7.1 The exponential function
Textbook: Section 4.1

A function f (x) hasexponential growthif
f (x+1)

f (x)
is a constantk > 1, not de-

pending onx. This means that for anyx, if you increasex by 1, you multiply the
y-value f (x) by k to get the new value,f (x+1).

For example,y= 2x is has exponential growth, withk= 2.

Example 7.1.1.The populationP(t) of a culture of bacteriat hours after the start
of an experiment is given by

P(t) = 1000·1.1t .

(a) What is the initial population?

(b) Explain whyP(t) has exponential growth by showing that the population
increases by 10% every hour.

(c) A different sample of bacteria has an initial populationof 500 and increases
by 25% every hour. Suggest a function to model this population.
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Example 7.1.2.The sketch below shows the graphs ofy = ax for a = 1.5 and
a= 3. Add the graph ofy= 2x. What happens to the slope of the tangent line to
each of these curves atx= 0 asa increases?
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Definition 7.1.3. The constante is the real number with the property that the graph
of y= ex has a tangent line of slope 1 atx = 0. The functiony= ex, sometimes
writteny= exp(x), is calledthe exponential function.

From the discussion above, we see thate is between 2 and 3. In fact,

e= 2.7182818. . . .

Your calculator will tell you this if you ask it to computeexp(1) or e1.
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The laws of exponents we discussed on page 43 apply in particular to the
function f (x) = ex:

Theorem 7.1.4(Power laws forex). For any real numbers x and y,

1. ex ·ey = ex+y and
ex

ey = ex−y

2. (ex)y = exy

Example 7.1.5.Simplify ex(e−x)2.

Example 7.1.6.Simplify e2 ·
√

(e3x)5

e−x .

Theorem 7.1.7(The derivative ofex).
d
dx

(ex) = ex.

By the chain rule, we also have:

Theorem 7.1.8(The derivative ofeu). If u depends on x, then
d
dx

(eu) = eu · du
dx

.
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Example 7.1.9.Find the derivatives of:

(i) e−2x (ii) (esin(x))2 (iii) cos(ex) (iv) e
√

x2+1.

Theorem 7.1.10(The antiderivative ofex).
∫

exdx= ex+C.

Example 7.1.11.Find
∫ 2

0
exdx.

Example 7.1.12.What is
∫

e−2xdx?

Example 7.1.13.What is
∫

xe−x2
dx?

Example 7.1.14.What is
∫

x3e−x2
dx?
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7.2 Logarithms
Textbook: Section 4.2

Definition 7.2.1. If x> 0 then thenatural logarithmof x is the real numbery with
ey = x. We writey= ln(x) or y= lnx. We have

y= ln(x) ⇐⇒ ey = x for any real numbery and anyx> 0.

This defines a functiony= ln(x) which is defined forx> 0, and is undefined for
x≤ 0.

Example 7.2.2.Given the graph ofy = ex on the left, swapx andy to get the
graph ofx= ln(x). What are ln(1) and ln(2)? What are ln(−1) and ln(0)?

x

y

y= ex

x

y

Example 7.2.3.Simplify eln(x) ande2ln(x).

Example 7.2.4.Simplify ln(ex) and ln(e−3x2 ·e4).

Example 7.2.5.For which real numbersx is the functionf (x) = 2+ 1
2 ln(3− x)

defined? What aref (6) and f (−6)?
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Using the properties ofex discussed in the previous section, we can deduce
some properties of ln(x).

Theorem 7.2.6(Properties of ln(x)). For any positive numbers a and b and any
real number k,

1. ln(ab) = ln(a)+ ln(b) and ln
(a

b

)

= ln(a)− ln(b)

2. ln(ak) = k · ln(a)

3. ln(ek) = k (so, for example,ln(e) = ln(e1) = 1 and ln(1) = ln(e0) = 0).

4. eln(a) = a

Why is ln(x) an important function important for scientists?

One reason ln(x) is important is that it lets you solve equations where the
unknown variable is in a power, such as 2x = 10.

Here is another reason you might be familiar with. In many situations, one
quantity might be directly proportional to a power of another. So if x andy
are the quantities of interest, then you expect thaty= cxm for some powerm
and a positive constantc. To find the values of the constantsc andm, you
could imagine doing an experiment to get some values forx,y. Then take ln
of all of your values: if we writeY = ln(y) andX = ln(x) then we have

y= kxs =⇒ ln(y) = ln(kxs) = ln(c)+mln(x) =⇒ Y = mX+C

whereC= ln(c). So if you plotY againstX, you expect to get a straight
line with slopem andY-interceptC. By measuringmandC (and using
c= eC) you have found the constants in the formula you’re really interested
in, y= cxm.

This is why “log-log” plots are so useful.

Example 7.2.7.Solve the equation 2x = 10.

Example 7.2.8.Solve the equation ln(5x−2/3) = ln(25).
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If y = ln(x) then ey = x, so differentiating both sides of this equation with
respect tox using the chain rule gives

d
dx

(ey) = so
dy
dx

=

Theorem 7.2.9(The derivative of ln(x)).

d
dx

(ln(x)) =
1
x

for x> 0.

Applying the chain rule, we deduce:

Theorem 7.2.10.If u depends on x, then

d
dx

(ln(u)) =
1
u
· du
dx

.

Example 7.2.11.Find the derivatives of ln(4x) and ln(
√

x2+1).

Example 7.2.12.(i) Let a be a positive constant witha 6= 1. Use the equation

a= eln(a) to writeax in terms ofex, and hence find the derivative
d
dx

(ax).

(ii) What is the slope of the tangent line to the curvey= 2x atx= 0?
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7.3 The uninhibited growth model dP
dt = kP

Textbook: Section 4.3

Let P= P(t) be the size of a population at timet. If the population growth rate is
directly proportional to the population size, then there isa constantk> 0 with

dP
dt

= kP.

[Another way to write this isP′(t) = kP(t).]

Theorem 7.3.1(The solutions tody
dx = ky). Let k be any real constant. The func-

tions y= y(x) which satisfy
dy
dx

= ky

are precisely the functions which can be written

y= cekx

where c is a constant. In fact, c is the value of y at x= 0.

The equation
dy
dx

= ky is called adifferential equationsince it involves the

derivative of a function. The theorem tells us all the functionsy= y(x) which sat-
isfy the differential equation. These functions are thesolutionsto this differential
equation.

Example 7.3.2.Find a functionf (x) so thatf ′(x) = 4 f (x) and f (0) = 25.

Example 7.3.3.Show that the functionP(t) = 1000×1.1t from Example 7.1.1
can be rewritten in the formP(t) = cekt for some constantsc andk, and write
down a differential equation whichP satisfies.
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Returning to our population model:
dP
dt

= kP for some constantk > 0. The

theorem tells us that
P(t) = P0ekt

for some constantP0.

We say thatP(t) = P0ekt grows exponentially.

Definition 7.3.4. Suppose thatP(t) grows exponentially withP(t) = P0ekt for
some constantsP0 andk> 0. Thegeneration time, or doubling time Tis the time
it takesP to double in size from its initial valueP0.

In summary:

• T =
ln(2)

k

• whenevert increases by the generation timeT,
the value ofP(t) doubles.
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Example 7.3.5.If P(t) = 10·e5t , what is the generation time?

Example 7.3.6.A population of sizeP(t) grows exponentially from an initial pop-
ulation of 200. If the population doubles every 7 days, find anequation forP(t).

Example 7.3.7.A rabbit populationP(t) grows according to

P(t) = 400×1.032t

wheret is the time, in months, since the population was first measured. Find the
doubling time for this population, and find the population growth rate after one
month.
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7.4 Exponential decay
Textbook: Section 4.4

Radioactive isotopes decay exponentially. IfN(t) is the quantity of a given ra-

dioactive isotope in a sample, then the rate of decay,−dN
dt

, is directly proportional

to N(t). So there is a constantk> 0 with

dN
dt

=−kN.

By Theorem 7.3.1, we haveN(t) = N0e−kt for some constantN0.

Definition 7.4.1.Suppose thatN=N(t) decays exponentially according toN(t)=
N0e−kt for some constantk > 0. Thehalf life T is the time it takesN to halve in
size from its initial valueN0.

Just as for the doubling time, it’s easy to see that:

• T =
ln(2)

k

• whenevert increases by the half lifeT,
the value ofN(t) halves.

Example 7.4.2.(i) If N(t) = 8×1012×e−0.003t wheret is time in days, what is
the half life?

(ii) When isN(t) equal to 2×1012?

(iii) How long will it take beforeN(t) is less than 106?
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Example 7.4.3.The radioactive element Carbon-14 has a half-life of 5750 years.
The amountN(t) of Carbon-14 in a sample at timet, measured in years, decays
according to the differential equation

dN
dt

=−kN

wherek is some positive constant.
(i) State an equation forN(t), and sketch a graph showing the behaviour ofN(t)
ast increases. Mark the half-life ofN(t) on your sketch.

(ii) Which of the following three statements is true, and which is false? Explain
your answers.

1. The quantity of Carbon-14 in a sample is directly proportional to 1/t.

2. The rate of decay of Carbon-14 in a sample is directly proportional toN(t).

3. After 2×5750= 11,500 years, all of the Carbon-14 in a sample will have
decayed.

(iii) Compute the age of a sample which has lost 60% of its Carbon-14.


