## 7 Exponential and logarithmic functions

## 7.1 The exponential function

Textbook: Section 4.1

A function f(x) has *exponential growth* if  $\frac{f(x+1)}{f(x)}$  is a constant k > 1, not depending on x. This means that for any x, if you increase x by 1, you multiply the y-value f(x) by k to get the new value, f(x+1).

For example,  $y = 2^x$  is has exponential growth, with k = 2.

**Example 7.1.1.** The population P(t) of a culture of bacteria *t* hours after the start of an experiment is given by

$$P(t) = 1000 \cdot 1.1^t.$$

(a) What is the initial population?

(b) Explain why P(t) has exponential growth by showing that the population increases by 10% every hour.

(c) A different sample of bacteria has an initial population of 500 and increases by 25% every hour. Suggest a function to model this population.

**Example 7.1.2.** The sketch below shows the graphs of  $y = a^x$  for a = 1.5 and a = 3. Add the graph of  $y = 2^x$ . What happens to the slope of the tangent line to each of these curves at x = 0 as *a* increases?



**Definition 7.1.3.** The constant *e* is the real number with the property that the graph of  $y = e^x$  has a tangent line of slope 1 at x = 0. The function  $y = e^x$ , sometimes written  $y = \exp(x)$ , is called *the exponential function*.

From the discussion above, we see that e is between 2 and 3. In fact,

$$e=2.7182818\ldots$$

Your calculator will tell you this if you ask it to compute exp(1) or  $e^1$ .

The laws of exponents we discussed on page 43 apply in particular to the function  $f(x) = e^x$ :

**Theorem 7.1.4** (Power laws for  $e^x$ ). For any real numbers x and y,

1.  $e^{x} \cdot e^{y} = e^{x+y}$  and  $\frac{e^{x}}{e^{y}} = e^{x-y}$ 2.  $(e^{x})^{y} = e^{xy}$ 

**Example 7.1.5.** Simplify  $e^{x}(e^{-x})^{2}$ .

**Example 7.1.6.** Simplify  $e^2 \cdot \sqrt{\frac{(e^{3x})^5}{e^{-x}}}$ .

**Theorem 7.1.7** (The derivative of  $e^x$ ).  $\frac{d}{dx}(e^x) = e^x$ .

By the chain rule, we also have:

**Theorem 7.1.8** (The derivative of  $e^u$ ). If u depends on x, then  $\frac{d}{dx}(e^u) = e^u \cdot \frac{du}{dx}$ .

Example 7.1.9. Find the derivatives of:

(i) 
$$e^{-2x}$$
 (ii)  $(e^{\sin(x)})^2$  (iii)  $\cos(e^x)$  (iv)  $e^{\sqrt{x^2+1}}$ .

**Theorem 7.1.10** (The antiderivative of  $e^x$ ).

$$\int e^x dx = e^x + C.$$

**Example 7.1.11.** Find  $\int_0^2 e^x dx$ .

**Example 7.1.12.** What is  $\int e^{-2x} dx$ ?

**Example 7.1.13.** What is  $\int xe^{-x^2} dx$ ?

**Example 7.1.14.** What is  $\int x^3 e^{-x^2} dx$ ?

## 7.2 Logarithms

Textbook: Section 4.2

**Definition 7.2.1.** If x > 0 then the *natural logarithm* of x is the real number y with  $e^y = x$ . We write  $y = \ln(x)$  or  $y = \ln x$ . We have

 $y = \ln(x) \iff e^y = x$  for any real number y and any x > 0.

This defines a function  $y = \ln(x)$  which is defined for x > 0, and is undefined for  $x \le 0$ .

**Example 7.2.2.** Given the graph of  $y = e^x$  on the left, swap x and y to get the graph of  $x = \ln(x)$ . What are  $\ln(1)$  and  $\ln(2)$ ? What are  $\ln(-1)$  and  $\ln(0)$ ?



**Example 7.2.3.** Simplify  $e^{\ln(x)}$  and  $e^{2\ln(x)}$ .

**Example 7.2.4.** Simplify  $\ln(e^x)$  and  $\ln(e^{-3x^2} \cdot e^4)$ .

**Example 7.2.5.** For which real numbers x is the function  $f(x) = 2 + \frac{1}{2}\ln(3-x)$  defined? What are f(6) and f(-6)?

Using the properties of  $e^x$  discussed in the previous section, we can deduce some properties of  $\ln(x)$ .

**Theorem 7.2.6** (Properties of ln(x)). For any positive numbers a and b and any real number k,

1. 
$$\ln(ab) = \ln(a) + \ln(b)$$
 and  $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$ 

$$2. \ \ln(a^k) = k \cdot \ln(a)$$

- 3.  $\ln(e^k) = k$  (so, for example,  $\ln(e) = \ln(e^1) = 1$  and  $\ln(1) = \ln(e^0) = 0$ ).
- 4.  $e^{\ln(a)} = a$

#### Why is ln(x) an important function important for scientists?

One reason ln(x) is important is that it lets you solve equations where the unknown variable is in a power, such as  $2^x = 10$ .

Here is another reason you might be familiar with. In many situations, one quantity might be directly proportional to a power of another. So if *x* and *y* are the quantities of interest, then you expect that  $y = cx^m$  for some power *m* and a positive constant *c*. To find the values of the constants *c* and *m*, you could imagine doing an experiment to get some values for *x*, *y*. Then take ln of all of your values: if we write  $Y = \ln(y)$  and  $X = \ln(x)$  then we have

$$y = kx^s \implies \ln(y) = \ln(kx^s) = \ln(c) + m\ln(x) \implies Y = mX + C$$

where  $C = \ln(c)$ . So if you plot *Y* against *X*, you expect to get a straight line with slope *m* and *Y*-intercept *C*. By measuring *m* and *C* (and using  $c = e^{C}$ ) you have found the constants in the formula you're really interested in,  $y = cx^{m}$ .

This is why "log-log" plots are so useful.

**Example 7.2.7.** Solve the equation  $2^x = 10$ .

**Example 7.2.8.** Solve the equation  $\ln(5x^{-2/3}) = \ln(25)$ .

If  $y = \ln(x)$  then  $e^y = x$ , so differentiating both sides of this equation with respect to x using the chain rule gives

$$\frac{d}{dx}(e^y) =$$
 so  $\frac{dy}{dx} =$ 

**Theorem 7.2.9** (The derivative of ln(x)).

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x} \quad for \ x > 0.$$

Applying the chain rule, we deduce:

**Theorem 7.2.10.** If u depends on x, then

$$\frac{d}{dx}(\ln(u)) = \frac{1}{u} \cdot \frac{du}{dx}.$$

**Example 7.2.11.** Find the derivatives of  $\ln(4x)$  and  $\ln(\sqrt{x^2+1})$ .

**Example 7.2.12.** (i) Let *a* be a positive constant with  $a \neq 1$ . Use the equation  $a = e^{\ln(a)}$  to write  $a^x$  in terms of  $e^x$ , and hence find the derivative  $\frac{d}{dx}(a^x)$ .

(ii) What is the slope of the tangent line to the curve  $y = 2^x$  at x = 0?

# **7.3** The uninhibited growth model $\frac{dP}{dt} = kP$

Textbook: Section 4.3

Let P = P(t) be the size of a population at time *t*. If the population growth rate is directly proportional to the population size, then there is a constant k > 0 with

$$\frac{dP}{dt} = kP.$$

[Another way to write this is P'(t) = kP(t).]

**Theorem 7.3.1** (The solutions to  $\frac{dy}{dx} = ky$ ). Let k be any real constant. The functions y = y(x) which satisfy

$$\frac{dy}{dx} = ky$$

are precisely the functions which can be written

$$y = ce^{kx}$$

where c is a constant. In fact, c is the value of y at x = 0.

The equation  $\frac{dy}{dx} = ky$  is called a *differential equation* since it involves the derivative of a function. The theorem tells us all the functions y = y(x) which satisfy the differential equation. These functions are the *solutions* to this differential equation.

**Example 7.3.2.** Find a function f(x) so that f'(x) = 4f(x) and f(0) = 25.

**Example 7.3.3.** Show that the function  $P(t) = 1000 \times 1.1^t$  from Example 7.1.1 can be rewritten in the form  $P(t) = ce^{kt}$  for some constants *c* and *k*, and write down a differential equation which *P* satisfies.

Returning to our population model:  $\frac{dP}{dt} = kP$  for some constant k > 0. The theorem tells us that

$$P(t) = P_0 e^{kt}$$

for some constant  $P_0$ .

We say that  $P(t) = P_0 e^{kt}$  grows exponentially.

**Definition 7.3.4.** Suppose that P(t) grows exponentially with  $P(t) = P_0 e^{kt}$  for some constants  $P_0$  and k > 0. The generation time, or doubling time T is the time it takes P to double in size from its initial value  $P_0$ .

In summary:

• 
$$T = \frac{\ln(2)}{k}$$

• whenever *t* increases by the generation time *T*, the value of *P*(*t*) doubles.

**Example 7.3.5.** If  $P(t) = 10 \cdot e^{5t}$ , what is the generation time?

**Example 7.3.6.** A population of size P(t) grows exponentially from an initial population of 200. If the population doubles every 7 days, find an equation for P(t).

**Example 7.3.7.** A rabbit population P(t) grows according to

$$P(t) = 400 \times 1.03^{2t}$$

where t is the time, in months, since the population was first measured. Find the doubling time for this population, and find the population growth rate after one month.

### 7.4 Exponential decay

#### Textbook: Section 4.4

Radioactive isotopes decay exponentially. If N(t) is the quantity of a given radioactive isotope in a sample, then the rate of decay,  $-\frac{dN}{dt}$ , is directly proportional to N(t). So there is a constant k > 0 with

$$\frac{dN}{dt} = -kN.$$

By Theorem 7.3.1, we have  $N(t) = N_0 e^{-kt}$  for some constant  $N_0$ .

**Definition 7.4.1.** Suppose that N = N(t) decays exponentially according to  $N(t) = N_0 e^{-kt}$  for some constant k > 0. The *half life* T is the time it takes N to halve in size from its initial value  $N_0$ .

Just as for the doubling time, it's easy to see that:

• 
$$T = \frac{\ln(2)}{k}$$

• whenever *t* increases by the half life *T*, the value of *N*(*t*) halves.

**Example 7.4.2.** (i) If  $N(t) = 8 \times 10^{12} \times e^{-0.003t}$  where t is time in days, what is the half life?

(ii) When is N(t) equal to  $2 \times 10^{12}$ ?

(iii) How long will it take before N(t) is less than  $10^6$ ?

**Example 7.4.3.** The radioactive element Carbon-14 has a half-life of 5750 years. The amount N(t) of Carbon-14 in a sample at time t, measured in years, decays according to the differential equation

$$\frac{dN}{dt} = -kN$$

where *k* is some positive constant.

(i) State an equation for N(t), and sketch a graph showing the behaviour of N(t) as *t* increases. Mark the half-life of N(t) on your sketch.

(ii) Which of the following three statements is true, and which is false? Explain your answers.

- 1. The quantity of Carbon-14 in a sample is directly proportional to 1/t.
- 2. The rate of decay of Carbon-14 in a sample is directly proportional to N(t).
- 3. After  $2 \times 5750 = 11,500$  years, all of the Carbon-14 in a sample will have decayed.
- (iii) Compute the age of a sample which has lost 60% of its Carbon-14.