6 Further differentiation and integration techniques

Here are three more rules for differentiation and two more integration techniques.

6.1 The product rule for differentiation

Textbook: Section 2.7
Theorem 6.1.1 (The product rule). If u and v are functions of x, then

$$
\frac{d}{d x}(u \cdot v)=u \cdot \frac{d v}{d x}+v \cdot \frac{d u}{d x}
$$

Example 6.1.2. Check that this works if $u=x^{3}$ and $v=x$.

Example 6.1.3. Find the derivative of $\left(x^{2}+3\right) \sin (x)$.

Example 6.1.4. If $f(x)=3 x \sqrt{x^{8}+2}$, compute the slope of the tangent line to $y=f(x)$ at $x=0$.

Example 6.1.5. Find $\frac{d y}{d x}$ if $y=3 x+\sin (\pi x) \cos \left(x^{2}-x\right)$.

Warning. The "rule" $\frac{d}{d x}(u \cdot v)=\frac{d u}{d x} \cdot \frac{d v}{d x}$ is wrong. Use the product rule instead!

6.2 The quotient rule for differentiation

Textbook: Section 2.7
Theorem 6.2.1 (The quotient rule). If u and v are functions of x, then

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}
$$

Example 6.2.2. Check that this works if $u=x^{3}$ and $v=x$.

Example 6.2.3. Find the derivative of $\frac{\sin (x)}{x^{2}+3}$.

Example 6.2.4. If $f(x)=\frac{3 x}{\sqrt{x^{8}+2}}$, find the slope of the tangent line to $y=f(x)$ at $x=0$.

Example 6.2.5. The function \tan is defined by $\tan (t)=\frac{\sin (t)}{\cos (t)}$. What is $\frac{d}{d t}(\tan (t))$?

Warning. The "rule" $\frac{d}{d x}(u / v)=\frac{d u}{d x} / \frac{d v}{d x}$ is wrong. Use the quotient rule instead!

6.3 The chain rule for differentiation

Textbook: Section 2.8
The chain rule is a rule for differentiating an expression formed by applying one function after another. We've already used two special cases of the chain rule: the extended power rule, Theorem 4.3.4, and the chain rule for trigonometric functions, Theorem 5.5.3.

Theorem 6.3.1 (The chain rule). If $y=f(u)$ where u is a function of x then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} .
$$

To use the chain rule, you have to decide which part of the formula to call u.
For example, suppose that we want to differentiate $f(x)=\sin \left(x^{2}\right)$. This is the same as $f(u)$ where $u=x^{2}$ and f is the sin function, so we can use the chain rule.

Example 6.3.2. Let $y=\sin \left(x^{2}\right)$. What is $\frac{d y}{d x}$?

Example 6.3.3.

(a) Find $f^{\prime}(x)$ if $f(x)=\cos (3 x-1)$.
(b) What is $\frac{d y}{d t}$ if $y=5 \cos (2 \pi t)+12$?
(c) Compute $\frac{d}{d x}\left(\sqrt[3]{2+\frac{1}{x}}\right)$.

Example 6.3.4. Let $f(x)=\tan \left(2 x-\frac{\pi}{4}\right)$. What is $f^{\prime}(x)$?

Example 6.3.5. Bacterial growth r is related to temperature T by the equation

$$
r=k\left(T-T_{0}\right)^{2}
$$

where T_{0} and k are constants.
(a) Find $\frac{d r}{d T}$.
(b) If T varies according to the formula $T(t)=T_{0}+\frac{1}{3} t^{3}$ where t is time in hours, find $\frac{d r}{d t}$ in terms of t, k and T_{0}.
(c) What is the rate of change of r with respect to t when $t=1$?

6.4 Integration by substitution

Textbook: Section 5.5
Theorem 6.4.1 (Integration by substitution). If $f=f(u)$ and $u=u(x)$ then

$$
\int f(u) \cdot \frac{d u}{d x} d x=\int f(u) d u .
$$

We can check that this is true using the chain rule. Indeed:
$\frac{d}{d x} \int f(u) d u=$

It appears that in Theorem 6.4.1, we are simply replacing $\frac{d u}{d x} d x$ with $d u$. This is useful notation, and we will write

$$
d u=\frac{d u}{d x} d x
$$

Example 6.4.2. Find $\int 2 x \sin \left(x^{2}\right) d x$.

As usual, you can (and should) check your answer by differentiating.

Example 6.4.3. What is $\int \frac{7}{x^{4}} \sqrt{2+\frac{1}{x^{3}}} d x$?

Example 6.4.4. Compute the following antiderivatives.
(a) $\int(5-x)^{4 / 3} d x$
(b) $\int \frac{r^{2}}{2} \sqrt{r^{3}+10} d r$

If we can find the indefinite integral of $f(x)$ by substitution then we can compute definite integrals of $f(x)$ such as $\int_{a}^{b} f(x) d x$. There are two methods, and you can use whichever you prefer. You just have to remember that the limits a and b are x-values, so you should either write everything in terms of x before subbing them in, or change them into u-values and sub them into a formula with u 's in it.

The second method is often quicker.
Example 6.4.5. Compute the definite integrals:
(a) $\int_{0}^{1} t \sin \left(\pi t^{2}\right) d t$
(b) $\int_{0}^{\pi / 4} \frac{\sin (x)}{\sqrt{\cos (x)}} d x$

6.5 Integration by parts

Textbook: Section 5.6
Theorem 6.5.1 (Integration by parts). If u and v are functions of x, then

$$
\int u d v=u v-\int v d u .
$$

Example 6.5.2. Find the indefinite integral $\int x \cos (x) d x$, and check your answer by differentiation.

To use this formula, you must:

1. Split the function being integrated as a product of two things, call one of them u and the other $d v$.
2. Compute $\frac{d u}{d x}$ by differentiating u; then $d u=\frac{d u}{d x} d x$.
3. Compute v from $d v$ by finding the antiderivative of $d v$.
4. Sub everything into the formula for integration by parts. Now you'll have another integral, $\int v d u$ to compute, using whatever method you choose (recognising it as a standard antiderivative, or using substitution, or another integration by parts, or...)

To make this process work, in step 1 you have to make an inspired guess of how to write the function being integrated as a product $u \cdot d v$, in such a way that you can:

- differentiate u (usually not hard)
- integrate $d v$ (which can be more difficult)
- and you can do the integral $\int v d u$.

Example 6.5.3. We'll meet the function $\ln (x)$ soon. Its derivative is $\frac{1}{x}$. Use this information to find $\int \ln (x) d x$.

To find definite integrals with integration by parts, we "keep the limits around" on the right hand side as follows. Remember that the limits a, b in this formula are always x-values, and u and v depend on x.

$$
\int_{a}^{b} u d v=[u v]_{a}^{b}-\int_{a}^{b} v d u
$$

Example 6.5.4. What is $\int_{0}^{1} \frac{x^{3}}{\sqrt{1+x^{2}}} d x$?

