4 Roots and fractional powers

4.1 Square roots and nth roots

Square roots

Suppose that a is a real number with $a \geq 0$, and consider the equation

$$
x^{2}=a .
$$

This has two real solutions. One is ≥ 0 and the other is ≤ 0.
For example, $x^{2}=9$ has the solutions
Definition 4.1.1. \sqrt{a} is defined to be non-negative solution to $x^{2}=a$.
So, using this notation, the solutions to $x^{2}=a$ are $x=\sqrt{a}$ and $x=-\sqrt{a}$. [This is sometimes abbreviated as $x= \pm \sqrt{a}$.]

Definition 4.1.2. The square root function is given by $y=\sqrt{x}$. It is defined for $x \geq 0$ and is undefined for $x<0$.

Note that if $y=\sqrt{x}$ then y is the non-negative number with $y^{2}=x$.
Example 4.1.3. Given the graph of $y=x^{2}$ on the left, swap x and y to get the graph of $x=y^{2}$, and then take just the non-negative y-values to get the graph of $y=\sqrt{x}$.

Example 4.1.4. For which real numbers x is the function $f(x)=2+\frac{1}{2} \sqrt{3-x}$ defined? What are $f(6)$ and $f(-6)$?

nth roots

Now let n be a positive integer, let a be a real number and consider the equation

$$
x^{n}=a .
$$

If n is even and $a \geq 0$ then this has two solutions (just like the case $n=2$), one of which is ≥ 0 and the other is ≤ 0.

If n is odd, then this equation has one solution for any real number a.
Example 4.1.5. Solve the equations $x^{4}=16$ and $x^{3}=27$.

Definition 4.1.6.

- If n is even and $a \geq 0$ then $\sqrt[n]{a}$ is the non-negative solution to $x^{n}=a$.
- If n is odd and a is any real number then $\sqrt[n]{a}$ is the solution to $x^{n}=a$.

For example, $\sqrt[2]{a}=$
For each positive integer n, this defines a function $y=\sqrt[n]{x}$. If n is even then this function is undefined for the negative real numbers x. If n is odd then this function is defined for all real numbers x.

Note that if $y=\sqrt[n]{x}$ then y satisfies $y^{n}=x$.
Example 4.1.7. Given the graph of $y=x^{3}$ on the left, swap x and y to get the graphs of $x=y^{3}$ and $y=\sqrt[3]{x}$

4.2 Fractional powers

Recall that if n is an integer, we defined a^{n} on page 6:

- $a^{0}=1$; and
- if $n>0$ then $a^{n}=a \times \cdots \times a$ is the product of a with itself n times, and $a^{-n}=\frac{1}{a^{n}}$.

Definition 4.2.1. If m, n are positive integers and a is a real number then we define

$$
a^{m / n}=\sqrt[n]{a^{m}} \quad \text { and } \quad a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{\sqrt[n]{a^{m}}}
$$

whenever these quantities make sense. [This means that if n is odd then we need $a \geq 0$, and if n is even then a can be any real number].

Example 4.2.2. If $a \geq 0$ then $a^{1 / 2}=\sqrt[2]{a}=\sqrt{a}$. If $a>0$ then $a^{-1 / 2}=\frac{1}{\sqrt{a}}$.
In the next statement, the word "fractions" means any fraction like $\frac{5}{6},-\frac{43}{2}$, $10.32=\frac{1032}{100}, 2=\frac{2}{1}$ and so on.

Theorem 4.2.3 (Power laws for fractional exponents).
If a, b are non-negative real numbers and r, s are fractions then:

1. $(a b)^{r}=a^{r} \cdot b^{r}$ and $\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$ if $b \neq 0$
2. $a^{r} \cdot a^{s}=a^{r+s}$ and $\frac{a^{r}}{a^{s}}=a^{r-s}$
3. $\left(a^{r}\right)^{s}=a^{r s}$

Example 4.2.4. Explain why $(\sqrt[n]{a})^{n}=a$ and $\sqrt[n]{a^{n}}=a$ for any $a \geq 0$.

Example 4.2.5. Simplify the following, rewriting them using fractional powers:
(a) $\sqrt[4]{y}$
(b) $\sqrt[3]{8 x^{2}}$
(d) $\frac{1}{\left(\sqrt{25 x z^{-2}}\right)^{3}} \quad$ [Assume that $x>0$ and $\left.z>0\right]$.
(e) $\frac{y}{\sqrt[5]{y^{10}}}$

Example 4.2.6. Let F denote the femur length, M the mass and W the waist circumference of a healthy adult man. A simple model suggests that M is directly proportional to F^{3} and that M is directly proportional to W^{2}. Show that there is a constant r so that F is directly proportional to W^{r}, and find the value of r.

4.3 Derivatives of powers

Textbook: Section 2.5
We stated the power rule for derivatives in Theorem 2.2.3, and applied this to positive whole-number powers. In fact, this rule works for any constant power.

Theorem 4.3.1. The derivative of x^{r} is $r x^{r-1}$ for any constant power r :

$$
\frac{d}{d x}\left(x^{r}\right)=r x^{r-1}
$$

Example 4.3.2. Find the derivative of $-2 x^{5}+\frac{7}{\sqrt{x}}$.

Example 4.3.3. If $f(x)=\sqrt[3]{x}$ then $f^{\prime}(0)$ is not defined. Use the power rule to show that this is true, and draw a picture to explain it.

The extended power rule

Textbook: Section 2.8
Theorem 4.3.4 (The extended power rule). If u is a function of x, then for any constant power r we have

$$
\frac{d}{d x}\left(u^{r}\right)=r u^{r-1} \cdot \frac{d u}{d x}
$$

Warning. As in the power rule, it is essential that the power r is a constant.
Example 4.3.5. Check that this works if $u=3 x+1$ and $r=2$.

Example 4.3.6. Find $\frac{d y}{d x}$ if $y=\left(x^{2}+1\right)^{5}$.

Example 4.3.7. Compute $\frac{d}{d x} \sqrt{(x+6)^{3}}$.

Example 4.3.8. Compute $\frac{d}{d x} \sqrt{\left(5 x^{2}+6\right)^{3}}$.

Example 4.3.9. Compute $f^{\prime}(x)$ if $f(x)=1+x+3 \sqrt{\left(5 x^{-3}+6\right)^{3}}$.

Example 4.3.10. What is the derivative of $\frac{1}{(2 x+3)^{0.3}}$?

4.4 Antiderivatives and integrals of powers

If we reverse Theorem 4.3.1, write $s=r-1$ and divide by $r+1$, then we get:
Theorem 4.4.1. For any constant power s with $s \neq-1$, the antiderivative of x^{s} is

$$
\int x^{s} d x=\frac{1}{s+1} x^{s+1}+C
$$

Remark 4.4.2. If $s=-1$ then this formula doesn't work, because it tells us to divide by 0 . We'll see what the antiderivative of x^{-1} is later on.

Example 4.4.3. What is $\int x^{1 / 4} d x$?

Example 4.4.4. What is $\int \frac{5}{\sqrt{x}} d x$?

Example 4.4.5. Compute $\int_{1}^{3} 2 t^{3}-t^{0.8} d t$

Example 4.4.6. Find a function $f(x)$ so that $f^{\prime}(x)=3 \sqrt{x}$ and $f(1)=3$.

We can also reverse the extended power rule:
Theorem 4.4.7. If u is a function of x, then for any constant power s we have

$$
\int u^{s} \cdot \frac{d u}{d x} d x=\frac{1}{s+1} u^{s+1}+C .
$$

Example 4.4.8. What is $\int 2 x\left(x^{2}-6\right)^{1 / 4} d x$?

Example 4.4.9. What is $\int x\left(x^{2}-6\right)^{1 / 4} d x$?

Example 4.4.10. What is $\int(3 x+1)^{12} d x$?

Example 4.4.11. Compute $\int_{1}^{3} \frac{x+1}{\sqrt{x(x+2)}} d x$

