4 Roots and fractional powers

4.1 Square roots and *n*th roots

Square roots

Suppose that *a* is a real number with $a \ge 0$, and consider the equation

$$x^2 = a$$
.

This has two real solutions. One is ≥ 0 and the other is ≤ 0 .

For example, $x^2 = 9$ has the solutions

Definition 4.1.1. \sqrt{a} is defined to be non-negative solution to $x^2 = a$.

So, using this notation, the solutions to $x^2 = a$ are $x = \sqrt{a}$ and $x = -\sqrt{a}$. [This is sometimes abbreviated as $x = \pm \sqrt{a}$.]

Definition 4.1.2. The *square root function* is given by $y = \sqrt{x}$. It is defined for $x \ge 0$ and is undefined for x < 0.

Note that if $y = \sqrt{x}$ then y is the non-negative number with $y^2 = x$.

Example 4.1.3. Given the graph of $y = x^2$ on the left, swap x and y to get the graph of $x = y^2$, and then take just the non-negative y-values to get the graph of $y = \sqrt{x}$.

Example 4.1.4. For which real numbers x is the function $f(x) = 2 + \frac{1}{2}\sqrt{3-x}$ defined? What are f(6) and f(-6)?

nth roots

Now let n be a positive integer, let a be a real number and consider the equation

 $x^n = a$.

If *n* is even and $a \ge 0$ then this has two solutions (just like the case n = 2), one of which is ≥ 0 and the other is ≤ 0 .

If n is odd, then this equation has one solution for any real number a.

Example 4.1.5. Solve the equations $x^4 = 16$ and $x^3 = 27$.

Definition 4.1.6.

- If *n* is even and $a \ge 0$ then $\sqrt[n]{a}$ is the non-negative solution to $x^n = a$.
- If *n* is odd and *a* is any real number then $\sqrt[n]{a}$ is the solution to $x^n = a$.

For example, $\sqrt[2]{a} =$

For each positive integer *n*, this defines a function $y = \sqrt[n]{x}$. If *n* is even then this function is undefined for the negative real numbers *x*. If *n* is odd then this function is defined for all real numbers *x*.

Note that if $y = \sqrt[n]{x}$ then y satisfies $y^n = x$.

Example 4.1.7. Given the graph of $y = x^3$ on the left, swap x and y to get the graphs of $x = y^3$ and $y = \sqrt[3]{x}$

4.2 Fractional powers

Recall that if n is an integer, we defined a^n on page 6:

- $a^0 = 1$; and
- if n > 0 then $a^n = a \times \cdots \times a$ is the product of a with itself n times, and $a^{-n} = \frac{1}{a^n}$.

Definition 4.2.1. If *m*,*n* are positive integers and *a* is a real number then we define

$$a^{m/n} = \sqrt[n]{a^m}$$
 and $a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{\sqrt[n]{a^m}}$

whenever these quantities make sense. [This means that if *n* is odd then we need $a \ge 0$, and if *n* is even then *a* can be any real number].

Example 4.2.2. If $a \ge 0$ then $a^{1/2} = \sqrt[2]{a} = \sqrt{a}$. If a > 0 then $a^{-1/2} = \frac{1}{\sqrt{a}}$.

In the next statement, the word "fractions" means any fraction like $\frac{5}{6}$, $-\frac{43}{2}$, $10.32 = \frac{1032}{100}$, $2 = \frac{2}{1}$ and so on.

Theorem 4.2.3 (Power laws for fractional exponents). *If a, b are non-negative real numbers and r, s are fractions then:*

1. $(ab)^r = a^r \cdot b^r$ and $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$ if $b \neq 0$ 2. $a^r \cdot a^s = a^{r+s}$ and $\frac{a^r}{a^s} = a^{r-s}$ 3. $(a^r)^s = a^{rs}$

Example 4.2.4. Explain why $(\sqrt[n]{a})^n = a$ and $\sqrt[n]{a^n} = a$ for any $a \ge 0$.

Example 4.2.5. Simplify the following, rewriting them using fractional powers:

(a) $\sqrt[4]{y}$ (b) $\sqrt[3]{8x^2}$ (c) $\sqrt[3]{x^2 + 1}$ (d) $\frac{1}{(\sqrt{25xz^{-2}})^3}$ [Assume that x > 0 and z > 0]. (e) $\frac{y}{\sqrt[3]{y^{10}}}$

Example 4.2.6. Let *F* denote the femur length, *M* the mass and *W* the waist circumference of a healthy adult man. A simple model suggests that *M* is directly proportional to F^3 and that *M* is directly proportional to W^2 . Show that there is a constant *r* so that *F* is directly proportional to W^r , and find the value of *r*.

4.3 Derivatives of powers

Textbook: Section 2.5

We stated the power rule for derivatives in Theorem 2.2.3, and applied this to positive whole-number powers. In fact, this rule works for any constant power.

Theorem 4.3.1. *The derivative of* x^r *is* rx^{r-1} *for any constant power r:*

$$\frac{d}{dx}(x^r) = rx^{r-1}.$$

Example 4.3.2. Find the derivative of $-2x^5 + \frac{7}{\sqrt{x}}$.

Example 4.3.3. If $f(x) = \sqrt[3]{x}$ then f'(0) is not defined. Use the power rule to show that this is true, and draw a picture to explain it.

The extended power rule

Textbook: Section 2.8

Theorem 4.3.4 (The extended power rule). *If u is a function of x, then for any constant power r we have*

$$\frac{d}{dx}(u^r) = ru^{r-1} \cdot \frac{du}{dx}$$

Warning. As in the power rule, it is essential that the power *r* is a *constant*. **Example 4.3.5.** Check that this works if u = 3x + 1 and r = 2.

Example 4.3.6. Find $\frac{dy}{dx}$ if $y = (x^2 + 1)^5$.

Example 4.3.7. Compute
$$\frac{d}{dx}\sqrt{(x+6)^3}$$
.

Example 4.3.8. Compute
$$\frac{d}{dx}\sqrt{(5x^2+6)^3}$$
.

Example 4.3.9. Compute f'(x) if $f(x) = 1 + x + 3\sqrt{(5x^{-3} + 6)^3}$.

Example 4.3.10. What is the derivative of $\frac{1}{(2x+3)^{0.3}}$?

4.4 Antiderivatives and integrals of powers

If we reverse Theorem 4.3.1, write s = r - 1 and divide by r + 1, then we get:

Theorem 4.4.1. For any constant power *s* with $s \neq -1$, the antiderivative of x^s is

$$\int x^s \, dx = \frac{1}{s+1} x^{s+1} + C$$

Remark 4.4.2. If s = -1 then this formula doesn't work, because it tells us to divide by 0. We'll see what the antiderivative of x^{-1} is later on.

Example 4.4.3. What is $\int x^{1/4} dx$?

Example 4.4.4. What is $\int \frac{5}{\sqrt{x}} dx$?

Example 4.4.5. Compute
$$\int_{1}^{3} 2t^{3} - t^{0.8} dt$$

Example 4.4.6. Find a function f(x) so that $f'(x) = 3\sqrt{x}$ and f(1) = 3.

We can also reverse the extended power rule:

Theorem 4.4.7. If *u* is a function of *x*, then for any constant power *s* we have

$$\int u^s \cdot \frac{du}{dx} dx = \frac{1}{s+1} u^{s+1} + C.$$

Example 4.4.8. What is $\int 2x(x^2-6)^{1/4} dx$?

Example 4.4.9. What is
$$\int x(x^2-6)^{1/4} dx$$
?

Example 4.4.10. What is $\int (3x+1)^{12} dx$?

Example 4.4.11. Compute
$$\int_{1}^{3} \frac{x+1}{\sqrt{x(x+2)}} dx$$