Aspects catégoriques de la virtualité

Plan:
X) Intro: tresses et tresses virtuelles.
XX) Une version catégorique des tresses virtuelles.
XXX) Applications:
 X) Une interprétation catégorique des structures auto-distributives virtuelles,
 XX) "Urillage" des représentations des TVBn.

\[
B_n = \langle b_1, \ldots, b_n \rangle / \ [b_i ^2 = 1 , b_i b_j b_i = b_j b_i b_j] \quad (\text{Comm})
\]

\[
S_n = B_n / \{ a_i ^2 = 1 + i \} \quad (S)
\]

TVBn = \langle \sum_{i=1}^{n-1} e_i, \sum_{i=1}^{n} e_{i+1} \rangle \rightarrow (\text{Comm} \& \text{S}(YB)) \quad \text{pour les } e_i
\]

\[
\sum_{i=1}^{n} e_{i+1} = \sum_{i=1}^{n} e_{i+1} \quad (YB_n)
\]

\[
\text{fermature}
\]

\[
\text{nœuds entrelacs}
\]

\[
\text{fermature (Kamada, 07)}
\]

\[
\text{codaage de Gauss (Vershovi, 01)}
\]

\[
\text{décodage}
\]

\[
1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots \rightarrow 2 \rightarrow 1
\]

\[
\text{solution: nœuds virtuels/Kauffman, 91)}
\]

\[
(\text{YB}_n)
\]

\[
\text{"YB" interdit}
\]

Rack (ou ensemble auto-distributif);

Joyce, Matveev, 82):

ensemble \(S \), \(S \times S \rightarrow S \) t.q.

\[
(\text{AD}) \quad (a \circ b) \circ c = (a \circ c) \circ (b \circ c) \quad \forall a, b, c \in S
\]

\[
(\text{R}) \quad \forall S : S \times S \rightarrow S \) t.q. \((a \circ b) \circ c = (a \circ b) \circ (c \circ b) \quad \forall a, b, c \in S
\]

Ex.: \(S \) est un gpe, \(a \circ b = a \circ b \circ 1 \).

\[
B_n \times G \; S \times \times
\]

\[
\text{repn de Viritinger}
\]

\[
\text{Pi}(M^2, K)
\]

1) action "réelle":

\[
\begin{array}{ccc}
\text{a} & \text{a} & \text{a} \\
\text{c} & \text{a} & \text{c} \\
\text{b} & \text{b} & \text{c}
\end{array}
\]

\[
\text{pè:} \quad \begin{array}{ccc}
\text{a} & \text{a} & \text{a} \\
\text{c} & \text{a} & \text{c} \\
\text{b} & \text{b} & \text{c}
\end{array}
\]

(\text{YB}_n)

2) action "virtuelle" (Monteiro, 02):

rack \((S, 4) \) + autom-sn de rack\(f \):

\[
(\text{RV}) \quad f(a \circ b) = f(a) \circ f(b) \quad \forall a, b \in S
\]

\[
\text{rack} (S, 4)
\]

\[
\text{f(18) f(18)}
\]

\[
\text{YB}_n
\]
En fait, si \(\mathcal{C} \) est une catégorie strictement monotone, alors elle est muni d'une carte \(\text{Aut}(\mathcal{C}) \) non-nulle, d'où une carte \(\text{Aut}(\mathcal{C}) \) naturelle, qui n'est pas uniquement une carte \(\text{Aut}(\mathcal{C}) \) naturelle. En effet, si \(\text{Aut}(\mathcal{C}) \) est une carte naturelle, alors \(\mathcal{C} \) est une carte naturelle. En effet, si \(\text{Aut}(\mathcal{C}) \) est une carte naturelle, alors \(\mathcal{C} \) est une carte naturelle. En effet, si \(\text{Aut}(\mathcal{C}) \) est une carte naturelle, alors \(\mathcal{C} \) est une carte naturelle.
Une interprétation catégorique des racks virtuels.

Th. (L, 12): Soient
- \((C, C) \) une catégorie
- \(V \in Ob(C) \)
- \(f \in Aut(V) \)

Alors: (1) On a une sous-catégorie monoïdale \(C_0, f \) de \(C \), avec
- objets \(V^{\otimes n}, n \in \mathbb{N} \)
- \(\text{Hom}(V^{\otimes n}, V^{\otimes m}) = \{ \psi \in \text{Hom}(V^{\otimes n}, V^{\otimes m}) | f \circ \psi = \psi \circ f \} \)

(2) \(C_0 := (f^{-1} \otimes f) : V \to V \text{ Aut}(V) \)

définit un symétrassage pour \(C_0, f \).

Prop.: Soit \((S, f) \) un rack virtuel. Alors l'action de \(V_{Bn} \) sur l'objet tressé \((S, C_0) \) dans \((\text{Set}, S, f) \) est l'action virtuelle de Manturov.

\(\text{Ex} \, (L, 12): \) Soit \((V, \delta) \) un objet tressé dans \((C, C) \), Alors

- \(\delta^k := C_0 \circ \delta \circ C_0 \)

définit un tressage pour \(V \).

- Si en plus \(C \) est munie d'un 2ème symétrassage \(\delta' \), alors

\(\delta^k, C_0 \) et \((\delta^k)^6, (C_0)^6 \) définissent des \(V_{Bn} \)-représ isomorphes dans \(V_{Bn} \).

On a déjà rencontré 2 symétrassages sur la même catégorie en étudiant \(C_0, f \).

Ex. rack d'Alexander: \(A \in \mathbb{Z}, f_{2 \times 1} + 1 \) Mod, \(a \circ b := f_0(a) + (f_0(b)) \).

- \(V_{Bn} \text{ Gal} \)

 (1) rep. "réelle": \(\left(\begin{array}{c} 0 \\ t+1 \end{array} \right), \left(\begin{array}{c} 0 \\ t \end{array} \right) \) \(\Rightarrow \) rep du Bureau Virtual (Vershik, 01)

(2) rep. "virtuelle" - rack d'Alexander virtuel
- \(f(a) = a + \delta \), \(\delta \in A \) fixée \(\Rightarrow \) polymère d'Alexander virtuel (Manturov, 04)

- \(f \) n'est pas linéaire

Ex. \(\delta' \) vert\(\Rightarrow \) rep. \(\left(\begin{array}{c} 0 \\ t+1 \end{array} \right), \left(\begin{array}{c} 0 \\ t \end{array} \right) \) \(\Rightarrow \) rep. \(\left(\begin{array}{c} 0 \\ t+1 \\ t+1 \\ t+1 \end{array} \right), \left(\begin{array}{c} 0 \\ t+1 \\ t+1 \\ t+1 \end{array} \right) \)

Supposons \(S = S' \) et prenons \(k = 2 \):

- \(\left(\begin{array}{c} 0 \\ t+1 \end{array} \right), \left(\begin{array}{c} 0 \\ t+1 \\ t+1 \end{array} \right) \)

- matrice de Bureau bordure (Silver & Williams, 01)

- rep virtuelle (Manturov) : rep "fusillée"