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This survey is devoted to a new algebraic structure called qualgebra. Our topological mo-

tivation is the study of knotted 3-valent graphs and closely related branched braids via com-

binatorially defined coloring invariants. From an algebraic viewpoint, our structure a part of

an alternative axiomatization of groups, describing the properties of conjugation operation

and its interactions with the group multiplication. Qualgebras can thus be metaphorically

seen as a widening of the bridge between algebra and topology formed by the quandle struc-

ture, popular among knot theorists; see Table 1 to better understand how this bridge works.

Only a brief and rather informal exposition of different facets of qualgebras is given here.

For more details, comments, and proofs, see [20, 15]. However, Sections 2.1, 2.3, 2.4, and 3.1

contain some recent unpublished results, which will be thoroughly treated elsewhere.

1 How a knot theorist would invent qualgebras

1.1 Quandles as an algebraization of knots

Diagram coloring techniques count among the most powerful combinatorial tools in Knot

Theory. A famous example is given by Fox colorings, which are a particular case of quandle

colorings. In this section we briefly recall the latter.

Take a set S and a binary operation � on it. An (S,�)-coloring of a knot diagram D is an

assignment of an element of S to each arc of D in such a way that the condition on Figure 1 A

(motivated below) is satisfied around each crossing. Unoriented arcs in our diagrams mean

that the diagrams should be considered for all coherent orientations of such arcs.

a b

b a �b
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θα
B

a b
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c±1b±1a±1 = 1

C
a b

a∗b

a∗b

bab b

D

Figure 1: Coloring rules and their topological motivations

Now, we want colorings to say something about the knot KD represented by D, indepen-

dently of the diagram chosen. Therefore, we want Reidemeister moves (Figure 2) to induce

only local coloring changes, keeping fixed all the colors outside the small ball where the move

is realized. This happens if and only if operation � satisfies the following properties:

RIII ←→ self-distributivity: (a �b)�c = (a �c)� (b �c), (QSD)

RII ←→ invertibility: ∀b, a 7→ a �b is invertible, (QI nv )

RI ←→ idempotence: a � a = a. (QI dem)
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RI
←→

RII
←→

RIII
←→

Figure 2: Reidemeister moves for knot diagrams

Data (S,�) satisfying (QSD)-(QI dem) is called a quandle. This structure has been actively

studied since the pioneer 1982 papers of D. Joyce and S.V. Matveev [14, 23]. The argument

above implies that the number of colorings of a knot diagram by a quandle is stable by Rei-

demeister moves, and thus defines an invariant of the underlying knot:

knot invariant
colorings

; quandle

Such quandle invariants turn out to be extremely efficient in practice.

The central example of quandle is given by a group G and operation g �h = h−1g h on it;

it is the conjugation quandle of G , denoted by Conj(G). Now fix a diagram D of a knot KD .

Recall Wirtinger presentation of the knot group π1(R3\KD ), with one generator θα for each

arc α of D, as shown on Figure 1 B (point p is chosen in front of the diagram). Around each

crossing, compare the relations imposed on the θα with the coloring rule from Figure 1 A .

One readily identifies Conj(G)-colorings of D with representations of the knot group in G :

Col Conj(G)(D)
bijection
←→ Hom(π1(R3\KD ),G)

Quandle invariants thus generalize the classical study of knot groups.

1.2 Extending quandle colorings to 3-graphs

Knotted 3-valent graphs (simply called 3-graphs in what follows; cf. Figures 5 and 6 for typical

examples) have recently attracted a lot of attention, among others due to applications to

handle-body classification and to foams (a particular type of surfaces appearing in some

categorification constructions and in 3-manifold studies). According to [19, 26, 27], the study

of such graphs up to isotopy is equivalent to the study of their diagrams up to Reidemeister

moves I-VI (Figures 2 and 3), opening the way to combinatorial invariants.

RIV
←→

RV
←→

RVI
←→

Figure 3: Additional Reidemeister moves for knotted 3-valent graph diagrams

A generalization of the (very powerful) quandle colorings to graphs is a possible source of

such combinatorial invariants. The main challenge is to complete the coloring rule around

crossings (Figure 1 A ) with a rule around trivalent vertices. Wirtinger presentation of the

graph group suggests a solution when colors come from a conjugation quandle; it is given

on Figure 1 C , where the choices in ± depend on arc orientations. This idea was extended
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to more general quandles in [22, 11, 24, 12, 13]. In [20] we proposed an alternative solution,

which consists in enriching the notion of quandle in a particular way.

Our method works for well-oriented 3-graphs — that is, having only zip and unzip vertices

(Figure 4). Since every 3-graph is well-orientable, our method also allows to compare two

unoriented 3-graphs by considering all their well-oriented versions.

zip unzip

Figure 4: Zip and unzip vertices for 3-graphs

Now, suppose our quandle (S,�) to be endowed with a second binary operation ∗, and

use it to define a coloring rule around trivalent vertices as shown on Figure 1 D . As usual,

one checks if this rule forces Reidemeister moves to induce only local changes in diagrams’

colorings. It happens if and only if operations � and ∗ are compatible in the following sense:

RIV ←→ translation composability: a � (b ∗c) = (a �b)�c, (Q AComp )

RVI ←→ distributivity: (a∗b)�c = (a �c)∗ (b �c), (Q AD )

RV ←→ semi-commutativity: a∗b = b ∗ (a �b). (Q AComm )

Data (S,�,∗) satisfying (QSD)-(QI dem) and (Q AComp )-(Q AComm ) is called a qualgebra.

This term consists of words “quandle” and “algebra” zipped together, which underlines the

presence and the importance of two different operations in the story. Note that axiom (QSD)

can be omitted since it follows from (Q AComp ) and (Q AComm ). Our choice of axioms guar-

antees that the number of colorings of a graph diagram D by a qualgebra is stable by Reide-

meister moves, and thus defines an invariant of the underlying well-oriented 3-graph ΓD :

3-graph invariant
colorings

; qualgebra

The central example of qualgebra is given, once again, by a group G , with conjugation and

multiplication operations: g �h = h−1g h, g ∗h = g h. It is the group qualgebra of G , denoted

by Q A(G). The coloring rule from Figure 1 D recovers in this case the one from Figure 1 C ,

prescribed by Wirtinger presentation of the graph group. One that gets

Col Q A(G)(D)
bijection
←→ Hom(π1(R3\ΓD ),G)

We finish this section with a computation example. Here instead of counting all colo-

rings of a diagram by a qualgebra S, we restrict ourselves to isosceles colorings. This means

that both incoming (or outcoming) edges of any zip (respectively, unzip) vertex are colored

by the same element of S; in other words, one imposes a = b in Figure 1 D . Reidemeister

moves do not change the property of being isosceles, hence the number of isosceles colo-

rings #Col i so
S (D) is a graph invariant. The 3-graphs we are interested in are standard and

Kinoshita-Terasaka Θ-curves, with diagrams given on Figure 5. An isosceles coloring of Θst

is entirely determined by the choice of x ∈ S, so #Col i so
S (Θst ) = #S. Any other well-orientation

of Θst leads to the same result. For ΘK T , the choice of x, y ∈ S determines everything, but

this choice is not free, since a, b and c can be expressed in terms of x and y in different ways:
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(⋆)





a = x � (y ∗ y) = y � x,

b = x�̃y = y�̃(x ∗x),

c = (y ∗ y)� x = (x ∗x)�̃y.

Here we use notion x�̃y , classical in Quandle Theory: it stands for the unique z ∈ S satisfying

z � y = x (cf. axiom (QI nv )). Now, for any x, the choice y = x provides a solution to (⋆), so

#Col i so
S (ΘK T ) Ê #S = #Col i so

S (Θst ). To separate these quantities (and thus to distinguish the

two Θ-curves), take as S the group qualgebra of the symmetric group S4. One checks that

x = (123) and y = (432) 6= x satisfy (⋆), giving #Col i so
Q A(S4)(ΘK T ) > #Q A(S4) = #Col i so

Q A(S4)(Θst ).

x x x ∗x

Θst

x

x

x ∗x

y ∗ y y

y

a

b

c

ΘK T

Figure 5: Isosceles colorings for diagrams of standard and Kinoshita-Terasaka Θ-curves

2 How an algebraist would invent qualgebras

2.1 An abstraction of the conjugation-multiplication interaction in a group

Let us return to quandles once again. Besides Knot Theory, they appear in another setting,

completely algebraic this time. We saw above that conjugation operation defines a quandle

structure on a group, and thus satisfies axioms (QSD)-(QI dem). In fact, one can say more: if

a property involving only conjugation holds true in every group, then it is a consequence of

these three axioms. The reason lies in the structure of the free quandle on a set X , which can

be seen inside the free group on X . Quandle thus provide an axiomatization of conjugation.

In a similar way, conjugation and multiplication operations define a qualgebra structure

on a group, and thus satisfy all qualgebra axioms. Moreover, axioms (Q AComp )-(Q AComm )

capture all essential relations between conjugation and multiplication (cf. Table 1). How-

ever, formalizing this idea is not so easy. For instance, relation

(b � a)∗ (a �b) = ((a�̃b)� a)∗b

holds in any group qualgebra (both sides equal a−1bab−1ab), but fails in the free qualgebra

on two elements — and thus does not follow from qualgebra axioms.

abstract level quandle axioms specific qualgebra axioms

topology moves RI-RIII moves RIV-RVI

groups conjugation conjugation-multiplication interaction

Table 1: Different viewpoints on quandles and qualgebras
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The remainder of this section is devoted to various examples of qualgebras. Algebraic

properties of some of them are very different from those of groups. This confirms that the

interest of qualgebras goes beyond the realm of groups. One more conclusion is that con-

jugation and multiplication operations do not suffice for an alternative axiomatization of

groups; the missing ingredients will be determined in Section 2.3.

• The first example is still close to groups. Consider sub-qualgebras of a group qualge-

bra Q A(G) — that is, subsets stable by conjugation and multiplication. If G is finite,

one gets only subgroups of G . For infinite G new examples appear: for instance, the

sub-qualgebra N of Q A(Z,+) contains no inverses, and thus is not a group qualgebra.

• Now, consider qualgebras (S,�,∗) with a�b = a, called trivial qualgebras. In this case,

the only condition imposed on ∗ by axioms (Q AComp )-(Q AComm ) is the commutativity.

Colorings by trivial qualgebras do not distinguish over-crossings from under-crossings,

and thus do not capture the knottedness of 3-graphs. Such qualgebras thus yield only

abstract graph invariants.

• A more sophisticated example can be constructed as follows. Take a set X equipped

with a commutative operation ⋆ and a distinguished zero element 0 (this means that

0⋆x = x⋆0 = 0 for all x). Fix an n ∈N. Extend operation ⋆ to X ×n coordinate-wise, and

denote by · the usual right action of the symmetric group Sn on X ×n . Now, the set

QX ,n = { ((x1, . . . , xn), g ) ∈ X ×n
×Sn |xi = x j = 0 whenever g (i ) = j with i 6= j }

can be endowed with the following qualgebra structure:

(x, g )� (y ,h) = (x ·h,h−1g h),

(x, g )∗ (y ,h) = (x ⋆ y , g h).

Consider the simplest example X2 = {0, a }. Then

QX2,2 = { ((x1, x2), Id) |x1, x2 ∈ X2 }
∐

{ ((0,0),τ) }

(where τ is the non-trivial element of S2) consists of five elements. Two operations ⋆1

and ⋆2 can be fed into our machine: 0 is a zero element for both, and we have a⋆1 a = 0

and a ⋆2 a = a. The two resulting qualgebras are non-isomorphic. Their operations ∗i

are commutative, associative, but non-cancellative:

((0,0),τ)∗i ((0, a), Id) = ((0,0),τ)∗i ((a,0), Id) = ((0,0),τ), i = 1,2.

2.2 Towards a classification of qualgebras: the 4-element case

Up to size 3, all qualgebras are trivial. Things change in size 4. In [20] we classified all non-

trivial 4-element qualgebras up to qualgebra isomorphism. Here we describe all the 9 iso-

morphism classes. On the set Q = { p, q,r, s }, consider the involution exchanging p and q :

p = q, q = p,r = r, s = s.

Put x � r = x, and x � y = x for other y . As for the second operation, take the commutative

operation ∗ defined as follows:
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• x ∗ y = x ∗ y for all x, y ∈Q;

• r enjoys the absorption property: r ∗x = r for all x 6= r ;

• one has r ∗ r = s ∗ s = p ∗q = s;

• q ∗q and q ∗ s are any elements chosen in { p, q, s }.

The alternatives in the last point lead to 3×3 = 9 pairwise non-isomorphic structures.

The absorption property for r prevents these qualgebras from being cancellative with re-

spect to ∗ and, a fortiori, from embedding into a group. Further, out of these nine structures,

precisely two are associative. They are in fact the sub-qualgebras of QX2 ,2 from Section 2.1

obtained by omitting the element ((a, a), Id); the two possible operations⋆1 and⋆2 give non-

isomorphic structures. Lastly, three qualgebras out of the nine have neutral elements, and

none are unital associative. Thus even in this small size qualgebras can exhibit a wide range

of algebraic behavior, confirming the interest of this structure.

To illustrate topological applications of 4-element qualgebras, consider the diagrams of

standard and Hopf cuff graphs depicted on Figure 6. Analyzing the colors around trivalent

vertices, one gets for any qualgebra S the following bijections:

Col S(Cst )
bi j
←→ { (a,b,c) ∈ S×3

|b ∗a = a, b ∗c = c },

Col S(CH )
bi j
←→ { (a,b,c) ∈ S×3

|b ∗a = (a�̃c)� a, b ∗c = c � a }.

For a trivial qualgebra S, these sets coincide. However, for the non-trivial 4-element qual-

gebra Q above with q ∗ q = s and q ∗ s = q , one gets #Col Q (Cst ) = 18 (and the same value

for any well-orientation of Cst , due to the commutativity of ∗), and #Col Q (CH ) = 14. This

distinguishes the two cuff graphs.

ac

b

Cst

ac

b

a′

a′ = ((a�̃c)� a

c ′ = c � a

c ′

CH

Figure 6: Qualgebra colorings for diagrams of standard and Hopf cuff graphs

2.3 Getting closer to groups: symmetric qualgebras

We now turn to distinctions between the notions of group and qualgebra. Above were given

examples of qualgebras which are not associative and/or not cancellative. Here these two

properties will be shown to be essentially the only ones needed for a qualgebra to be a group.

The notion of symmetric quandle, introduced in 1996 by S. Kamada ([17]), should first be

recalled. It is a quandle (S,�) endowed with an involution ρ : S → S (called a good involu-

tion), compatible with operation � in the following sense:

ρ(a)�b = ρ(a �b), (1)

a �ρ(b) = a�̃b. (2)
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The topological role of a good involution is to render quandle invariants independent of

orientations. Concretely, if (S,�,ρ) is a symmetric quandle, then a bijection Col S(D) ↔

Col S (−D), where diagrams D and −D differ by the orientation only, can be given by the

rule
a ρ(a)←→

. Now, we want the same kind of rule to induce a bijection between the

(S,�,∗)-coloring sets of 3-graph diagrams which differ by the orientation of some edges only

(all the graphs involved are supposed well-oriented). For this to hold, ρ should be a good in-

volution for the quandle (S,�), compatible with ∗ in the following sense:

(a∗b)∗ρ(b) = ρ(b)∗ (b ∗a) = a. (3)

The resulting structure (S,�,∗,ρ) is called a symmetric qualgebra.

As one would expect, the central example is given by group qualgebras, for which the

inversion ρ(g ) = g−1 defines a good involution. Table 1 can now be continued with Table 2.

abstract level good involution axioms

topology unoriented 3-graphs

groups conjugation-inversion and multiplication-inversion interactions

Table 2: Different viewpoints on symmetric qualgebras

In a symmetric qualgebra, maps a 7→ a∗b and a 7→ b∗a are bijections for all b, according

to axiom (3). Consequently,

• for any b, property (3) defines ρ(b) uniquely; good involutions can thus be safely omit-

ted from the description of a symmetric qualgebra;

• the multiplication table for ∗ is a Latin square (i.e., every element occurs exactly once

in each column and in each row).

Using these observations, symmetric trivial qualgebras are particularly easy to describe.

They correspond to Latin squares which

1. are symmetric with respect to the main diagonal, and

2. together with a row corresponding to a permutation σ necessarily contain a row corre-

sponding to σ−1 (the two rows can coincide).

Let us now turn to examples.

• Among 3-element qualgebras (which are necessarily trivial), there are precisely 3 sym-

metric ones, as usual up to symmetric qualgebra isomorphism:

∗ x y z

x x y z

y y z x

z z x y

ρ x z y

∗ x y z

x x z y

y z y x

z y x z

ρ x y z

∗ x y z

x y x z

y x z y

z z y x

ρ x y z

Q A(Z/3Z)

not groups

• Among trivial 4-element qualgebras, there are precisely 4 symmetric ones:
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∗ x y z w

x x y z w

y y z w x

z z w x y

w w x y z

ρ x w z y

Q A(Z/4Z)

∗ x y z w

x x y z w

y y x w z

z z w x y

w w z y x

ρ x y z w

Q A(Z/2Z×Z/2Z)

∗ x y z w

x z y x w

y y z w x

z x w z y

w w x y z

ρ x w z y

∗ x y z w

x x y w z

y y x z w

z w z y x

w z w x y

ρ x y z w

not groups

• Non-trivial 4-element qualgebras are not cancellative and thus not symmetric.

Even though good involutions bring the structure of qualgebra closer to that of group,

the examples above show that symmetric qualgebra stay more general than groups. The

missing property turns out to be the associativity: group qualgebras are precisely symmetric

qualgebras which are associative (i.e., their operation ∗ is associative); see Figure 7.

symmetric qualgebras

groups

associative qualgebras

qualgebras

Figure 7: Qualgebras versus groups

In particular, this allows to deduce the non-associativity of two 3-element and two 4-

element symmetric qualgebras above from the absence of neutral elements for their opera-

tions ∗ (and thus their failure to be group qualgebras), which is much easier to check.

2.4 From quandles to qualgebras

Above we analyzed how far the notion of qualgebra is from that of group. A comparison of

the notions of qualgebra and quandle will be given here.

Let us first discuss when a quandle (S,�) is qualgebraizable — that is, admits a second

operation ∗ turning it into a qualgebra. For this, consider right translations Tb : a 7→ a � b,

written here on the right of their arguments. Axioms (QSD)-(QI dem ) imply that

1’. every Tb is an automorphism of the quandle (S,�) fixing b;
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2’. the map T : b 7→ Tb is a quandle morphism from (S,�) to Conj(Aut(S)) — that is, one

has Tb�c = T −1
c TbTc ;

3’. the image of T is a sub-quandle of Conj(Aut(S)).

Now, if (S,�,∗) is a qualgebra, then in addition

1. maps Tb are automorphisms of the qualgebra (S,�,∗);

2. the map T : b 7→ Tb is a qualgebra morphism from (S,�,∗) to Q A(Aut(S)) — that is, one

has Tb∗c = TbTc ;

3. T (S) is a sub-qualgebra of Q A(Aut(S)), and is in particular stable under composition;

4. the restriction of Tb to the sub-qualgebra of S generated by b is the identity map.

Property 3 is an important necessary qualgebraizability condition, which is unfortunately

not sufficient (a counter-example is given below). Neither does it give estimations for the

number of qualgebraizations of a given quandle: the related property 2 determines b ∗ c

only modulo Ker(T ), which can be very large. As for now, no satisfying qualgebraizability

criterion is known to the author.

We now give some examples where qualgebraizations are unique, are numerous, or do

not exist at all.

• As shown above, the qualgebraizations of a trivial quandle are given by commutative

operations ∗. For the trivial quandle with n elements, this gives n
n(n+1)

2 qualgebraiza-

tions. However, counting these qualgebraizations up to qualgebra isomorphism is much

more difficult. For instance, for n = 2 these 8 structures fall into 4 equivalence classes,

and for n = 3 the 729 structures form 129 classes.

• Consider an Alexander quandle (M , a �b =αa + (1−α)b), where M is a module over a

ring R , and α is a fixed invertible element from R . One calculates

(a)TbTc = (a �b)�c =α2a+α(1−α)b + (1−α)c.

Our quandle is qualgebraizable only if TbTc equals Td : a 7→ αa + (1 −α)d for some

d ∈ M . But this would imply that the value of α2a−αa does not depend on a. Since α is

invertible, the value of αa −a is also a constant, and thus a �b =αa +b −αb = a. One

concludes that among Alexander quandles, only the trivial ones are qualgebraizable.

• There are 3 quandles of size 3:

– The trivial one was shown to admit 4 qualgebraizations.

– The Alexander quandle (Z/3Z, a �b = 2b −a) (the colorings by which are precisely

the famous Fox colorings) was proved not to be qualgebraizable.

– The sub-quandle Q ′= { p, q,r } of the quandle Q from Section 2.2 satisfies necessary

algebraizability condition 3 above, since T (Q ′) is a 2-element subgroup (hence sub-

qualgebra) of Aut(Q ′). However, Q ′ is not qualgebraizable. Indeed, according to

property 4 above, element r ∗ r should be fixed by Tr , implying r ∗ r = r ; but this

contradicts property 2, which gives Tr∗r = Tr Tr = Id 6= Tr .
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• The quandle Q from Section 2.2 admits 9 qualgebraizations (up to isomorphism). Note

that above we showed its sub-quandle { p, q,r } not to be qualgebraizable.

• The group qualgebra Q A(Sn) is a qualgebraization of the conjugation quandle Conj(Sn).

This qualgebraization is unique for n Ê 3, since in this case the map T is injective.

3 Variations of qualgebra ideas

3.1 Towards qualgebra cohomology

Fix a qualgebra (S,�,∗). In Section 1.2, we saw that any Reidemeister move induces a bi-

jection between the sets Col S(D) and Col S(D ′) of (S,�,∗)-colorings of the two well-oriented

3-graph diagrams involved. The conclusion was that the cardinality #Col S(D) of such a set is

a 3-graph invariant. However, a lot of information is lost when passing from the coloring set

to its cardinality. Here we show how to retrieve some of it, imitating what was done for quan-

dle colorings of knots by Carter-Jelsovsky-Kamada-Langford-Saito in 1999 (cf. the original

papers [1, 2], a very pedagogic survey [16], and numerous related publications).

The basic idea is to associate to every S-coloring C of a diagram D a quantity invariant

under Reidemeister moves. Developing the approach of [1], we look for quantities of a par-

ticular form. Take two maps χ,λ : S ×S →Z, evaluate them on all the crossings and trivalent

vertices of D colored according to C , as shown on Figure 8, and sum up the values obtained.

The result is called the (χ,λ)-weight of C , denoted by ωχ,λ(C ).

a b

b a �b

7→ χ(a,b)

b a �b

bab b

7→ −χ(a,b)

a∗b

bab b

7→λ(a,b)

a b

a∗b

7→−λ(a,b)

Figure 8: Qualgebra 2-cocycle ; weight

The invariance of the weight ωχ,λ(C ) under Reidemeister moves is equivalent to the fol-

lowing relations for χ and λ:

RIV ←→ χ(a,b ∗c) =χ(a,b)+χ(a �b,c), (4)

RVI ←→ χ(a∗b,c)+λ(a �c,b �c) =χ(a,c)+χ(b,c)+λ(a,b), (5)

RV ←→ χ(a,b)+λ(a,b) =λ(b, a �b). (6)

The relations for the remaining moves follow from the presented ones and are omitted.

A pair of maps χ,λ : S ×S → Z satisfying (4)-(6) is called a qualgebra 2-cocycle for S. As

shown above, for such a pair the multi-set of weights {ωχ,λ(C ) |C ∈ Col S(D) } defines an in-

variant of the underlying well-oriented 3-graph ΓD :

3-graph invariant
colorings

;
& weights

qualgebra & 2-cocycle

The same qualgebra thus gives rise to a whole family of so-called cocycle invariants. In partic-

ular, one recovers the qualgebra invariants from Section 1.2 when taking zero maps χ and λ.
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The term “qualgebra 2-cocycle” was chosen to stress the analogy with quandle 2-cocycles

from [1], which are indeed 2-cocycles for the celebrated quandle cohomology theory. As for

now, no qualgebra cohomology theory is known. Topological arguments suggest what it

should look like in small degrees, but its continuation to higher degrees remains mysteri-

ous. The general braided cohomology theory from [21] yields a cohomology theory for rigid

qualgebras (with axiom (Q AComm ) omitted from the definition); topologically, these corre-

spond to rigid 3-graphs (for which graph vertices are viewed as disks, not as points, excluding

Reidemeister move V). However, this approach does not work for general qualgebras.

Let us describe some properties of 2-cocycles for our qualgebra S. They form an Abelian

group Z 2(S) under point-wise coordinate-wise addition. A subgroup B 2(S) is formed by

qualgebra 2-coboundaries — that is, 2-cocycles built out of maps φ : S →Z as follows:

χ(a,b) =φ(a �b)−φ(a),

λ(a,b) =φ(a)+φ(b)−φ(a∗b).

Such 2-cocycles are useless for distinguishing graphs, giving zero weights only. The quotient

H2(S) = Z 2(S)/B 2(S) is a natural candidate for the title “degree 2 cohomology of S”.

In order to show that the definitions from this section are not empty, we present compu-

tations for the 4-element qualgebras from Section 2.2. All the 9 qualgebras described there

exhibit the same homological behavior. Namely, they satisfy

Z 2(Q) ∼=Z
8, B 2(Q) ∼=Z

4, H2(Q) ∼=Z/2Z⊕Z
4.

The torsion appearing in the quotient is particularly interesting.

We finish with two directions continuing the “color-and-weight” ideas.

1. Together with diagram arcs, one can color diagram regions with elements of our qualge-

bra (or of a more general qualgebra module). The philosophy of weights then naturally

leads to a notion of qualgebra 3-cocycles, and to a generalizations of shadow cocycle in-

variants, constructed in the case of quandles in [17, 3].

2. The evaluation rules for trivalent vertices from Figure 8 are the simplest ones making

things work. One can add a third map
λ

: S ×S → Z to the initial data, use it for evalu-

ations on zip vertices, and write down the compatibility conditions for
λ

, λ and χ im-

posed by Reidemeister moves. This could lead to a richer family of 3-graph invariants.

3.2 Weak qualgebras and branched braids

Many combinatorial knot invariants directly generalize to links, braids, tangles and other 1-

dimensional topological objects. In the case of braids one can often obtain even stronger

results, since some flexibility is gained by excluding Reidemeister move I from the story. For

example, when extending quandle invariants to braids, one gets two enhancements for free:

1. a weaker structure called rack (= data (S,�) satisfying (QSD )-(QI nv ) only) can serve as a

coloring set;

2. the S-colors of the n upper arcs of a braid β with n strands uniquely determine the

colors of all remaining arcs, in particular of the n lower arcs; this defines a map Bβ :

S×n → S×n , which is a braid invariant.
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In the opposite direction, Alexander and Markov theorems present knots as certain equiva-

lence classes of braids, via the closure operation. Hence braid invariants provide a potential

source of knot invariants. In this section we introduce a topological notion which plays for

3-graphs the same role as braids play for knots, and present a weak version of qualgebras

sufficient for producing invariants of these new objects.

The closure map for braids is recalled on Figure 9. Alexander theorem asserts its surjecti-

vity by presenting every link as the closure of some braid. Markov theorem describes its

kernel by showing that any two braids with isotopic closures are connected by a finite se-

quence of Reidemeister moves II-III and Markov moves 1-2 (see Figure 10; thick lines here

replace an arbitrary number of strands).

closure

Figure 9: Braid ; link

β

β′

M1
←→

β′

β

β
M2
←→

β
M2
←→

β

Figure 10: Markov moves

When studying 3-graphs, braids should be replaced with branched braids. These are

knotted graphs in R
2× [0,1] with n univalent vertices on the top, m univalent vertices on the

bottom, some trivalent vertices in between, and no cups or caps (with respect to the third

coordinate projection R
2 × [0,1] → [0,1]). The closure operation is still defined for branched

braids with n = m, as shown on Figure 11.

closure

Figure 11: Branched braid ; 3-graph

K. Kanno and K. Taniyama ([18]) proved that all 3-graphs are obtained this way, giving

an Alexander-type theorem for branched braids; see also [25] for a related result for theta-

curves. A Markov-type theorem for branched braids was established by S. Kamada and the

author ([15]): we showed any two branched braids with isotopic closures to be connected by

a finite sequence of Reidemeister moves II-VI and Markov moves 1-2. This result generalizes

to graph-braids (containing vertices of arbitrary valence), and to virtual and welded settings.

12



closure map usual braids branched braids

surjectivity Alexander, 1923 Kanno-Taniyama, 2010

kernel Markov, 1935 Kamada-L., 2014

Table 3: Alexander- and Markov-type theorems in different settings

On the level of invariants, the two theorems imply that a branched braid invariant stable

under Markov moves automatically gives rise to a 3-graph invariant.

In the opposite direction, qualgebra colorings work well for branched braids. Among

the two enhancements mentioned above for quandle colorings of braids, only the first one

adapts to this setting. Indeed, a weak qualgebra (= data (S,�,∗) satisfying (QSD )-(QI nv )

and (Q AComp )-(Q AComm ) only) can serve as a coloring set for branched braid diagrams:

branched braid invariant
colorings

; weak qualgebra

However, contrary to the case of usual braids, here upper colors do not determine lower

colors* because of unzip vertices: the knowledge of a ∗b does not give you a and b. Hence

one has to content oneself with counting (weak) qualgebra colorings, possibly with weights.

3.3 Qualgebras in Set Theory

Besides the topological and algebraic settings described above, axioms (Q AComp )-(Q AComm )

also emerge in a completely different set-theoretical context. Namely, together with the as-

sociativity of ∗ and the existence of a neutral element 1 for ∗ satisfying moreover 1 � a = 1

and a �1 = a for all a, they define a (right-)distributive monoid (or, in other sources, RD al-

gebra). Examples include elementary embeddings, Laver tables, and extended braids. All of

them admit rich distributive monoid structures, motivating an extensive study of the con-

cept (see for instance [4, 9, 10, 5], or Chapter XI of [6] for a comprehensive exposition). A

weaker augmented (right-)distributive system structure of P. Dehornoy obeys only axioms

(QSD), (Q AComp ), and (Q AD ). The major example here is that of parenthesized braids ([7, 8]).

Our qualgebras are particular cases of augmented distributive systems.

Acknowledgements

The author is grateful to Seiichi Kamada, Patrick Dehornoy and Atsushi Ishii for stimulating

discussions, and to the researchers and secretaries of OCAMI and RIMS for their hospitality.

The author was supported by a JSPS Postdoctral Fellowship For Foreign Researchers and by

JSPS KAKENHI Grant 25·03315.

References

[1] J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito.

State-sum invariants of knotted curves and surfaces from quandle cohomology. Elec-

tron. Res. Announc. Amer. Math. Soc., 5:146–156 (electronic), 1999.

13



[2] J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito.

Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans.

Amer. Math. Soc., 355(10):3947–3989, 2003.

[3] Wesley Chang and Sam Nelson. Rack shadows and their invariants. J. Knot Theory Ram-

ifications, 20(9):1259–1269, 2011.

[4] Patrick Dehornoy. Infinite products in monoids. Semigroup Forum, 34(1):21–68, 1986.

[5] Patrick Dehornoy. Transfinite braids and left distributive operations. Math. Z.,

228(3):405–433, 1998.

[6] Patrick Dehornoy. Braids and self-distributivity, volume 192 of Progress in Mathematics.

Birkhäuser Verlag, Basel, 2000.

[7] Patrick Dehornoy. The group of parenthesized braids. Adv. Math., 205(2):354–409, 2006.

[8] Patrick Dehornoy. Free augmented LD-systems. J. Algebra Appl., 6(1):173–187, 2007.

[9] Aleš Drápal. On the semigroup structure of cyclic left distributive algebras. Semigroup

Forum, 51(1):23–30, 1995.

[10] Aleš Drápal. Finite left distributive algebras with one generator. J. Pure Appl. Algebra,

121(3):233–251, 1997.

[11] Thomas Fleming and Blake Mellor. Virtual spatial graphs. Kobe J. Math., 24(2):67–85,

2007.

[12] A. Ishii, M. Iwakiri, Y. Jang, and K. Oshiro. A G-family of quandles and handlebody-

knots. To appear in Illinois J. Math., May 2012.

[13] Atsushi Ishii. A multiple conjugation quandle and handlebody-knots. Preprint at

http://www.math.tsukuba.ac.jp/ aishii/papers.htm, 2013.

[14] David Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra,

23(1):37–65, 1982.

[15] S. Kamada and V. Lebed. Alexander and Markov theorems for graph-braids. In progress,

2014.

[16] Seiichi Kamada. Knot invariants derived from quandles and racks. In Invariants of

knots and 3-manifolds (Kyoto, 2001), volume 4 of Geom. Topol. Monogr., pages 103–117

(electronic). Geom. Topol. Publ., Coventry, 2002.

[17] Seiichi Kamada. Quandles with good involutions, their homologies and knot invariants.

In Intelligence of low dimensional topology 2006, volume 40 of Ser. Knots Everything,

pages 101–108. World Sci. Publ., Hackensack, NJ, 2007.

[18] Ken Kanno and Kouki Taniyama. Braid presentation of spatial graphs. Tokyo J. Math.,

33(2):509–522, 2010.

[19] Louis H. Kauffman. Invariants of graphs in three-space. Trans. Amer. Math. Soc.,

311(2):697–710, 1989.

14



[20] V. Lebed. Qualgebras and knotted 3-valent graphs. ArXiv e-prints, February 2014.

[21] Victoria Lebed. Homologies of algebraic structures via braidings and quantum shuffles.

J. Algebra, 391:152–192, 2013.

[22] Charles Livingston. Knotted symmetric graphs. Proc. Amer. Math. Soc., 123(3):963–967,

1995.

[23] S. V. Matveev. Distributive groupoids in knot theory. Mat. Sb. (N.S.), 119(161)(1):78–88,

160, 1982.

[24] Maciej Niebrzydowski. Coloring invariants of spatial graphs. J. Knot Theory Ramifica-

tions, 19(6):829–841, 2010.

[25] Tomoko Shinnoki and Takashi Takamuki. On the braid index of θm-curve in 3-space.

Math. Nachr., 260:84–92, 2003.

[26] Shuji Yamada. An invariant of spatial graphs. J. Graph Theory, 13(5):537–551, 1989.

[27] David N. Yetter. Category theoretic representations of knotted graphs in S3. Adv. Math.,

77(2):137–155, 1989.

Osaka City University Advanced Mathematical Institute

Osaka City University

Osaka 558-8585

JAPAN

E-mail address: lebed.vi
toria�gmail.
om

15


