Associative Algebras, Bialgebras and Leibniz Algebras as Braided Objects

Victoria LEBED

Paris 7, IMJ

British Mathematical Colloquium March 27, 2013

Plan

- Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathbf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

- Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathbf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

Braided categories

All categories are considered strict monoidal in this talk.

Definition

A category $\mathscr C$ is called *braided* if it is endowed with a *braiding*, i.e. a family of morphisms $c = \{c_{V,W} : V \otimes W \to W \otimes V\} \quad \forall V, W \in \mathsf{Ob}(\mathscr C)$ which is

✓ natural, i.e. for any $V, W, V', W' \in Ob(\mathscr{C})$, $f \in Hom_{\mathscr{C}}(V, V')$, $g \in Hom_{\mathscr{C}}(W, W')$ one has

$$c_{V',W'} \circ (f \otimes g) = (g \otimes f) \circ c_{V,W}$$

✓ compatible with the tensor product, i.e. $\forall V, W, U \in Ob(\mathscr{C})$, one has

$$c_{V,W\otimes U} = (\operatorname{Id}_{W} \otimes c_{V,U}) \circ (c_{V,W} \otimes \operatorname{Id}_{U}),$$

$$c_{V\otimes W,U} = (c_{V,U} \otimes \operatorname{Id}_{W}) \circ (\operatorname{Id}_{V} \otimes c_{W,U}).$$

Braided categories

Definition

A category $\mathscr C$ is called *braided* if it is endowed with a *braiding* $c = \{c_{V,W} : V \otimes W \to W \otimes V\} \quad \forall V, W \in \mathsf{Ob}(\mathscr C)$ which is

$$\checkmark \text{natural:} \qquad c_{V',W'} \circ (f \otimes g) = (g \otimes f) \circ c_{V,W}$$

✓ compatible with ⊗:

$$c_{V,W\otimes U} = (\operatorname{Id}_{W} \otimes c_{V,U}) \circ (c_{V,W} \otimes \operatorname{Id}_{U}),$$

$$c_{V\otimes W,U} = (c_{V,U} \otimes \operatorname{Id}_{W}) \circ (\operatorname{Id}_{V} \otimes c_{W,U}).$$

$$\begin{pmatrix}
W' & V' \\
f & g \\
V & W
\end{pmatrix} = \begin{pmatrix}
W' & V' \\
g & f \\
V & W
\end{pmatrix}$$

Braided categories

Braided objects

Definition

A braided object in $\mathscr C$ is an object V endowed with a braiding, i.e. a morphism $\sigma_V: V \otimes V \to V \otimes V$ satisfying (a categorical version of) the Yang-Baxter equation:

$$(\sigma_V \otimes \operatorname{Id}_V) \circ (\operatorname{Id}_V \otimes \sigma_V) \circ (\sigma_V \otimes \operatorname{Id}_V) = (\operatorname{Id}_V \otimes \sigma_V) \circ (\sigma_V \otimes \operatorname{Id}_V) \circ (\operatorname{Id}_V \otimes \sigma_V).$$

Yang-Baxter equation ↔ Reidemeister move III

Braided objects

Definition

A braided object in $\mathscr C$ is an object V endowed with a braiding, i.e. a morphism $\sigma_V: V\otimes V\to V\otimes V$ satisfying the Yang-Baxter equation:

$$(\sigma_V \otimes \operatorname{Id}_V) \circ (\operatorname{Id}_V \otimes \sigma_V) \circ (\sigma_V \otimes \operatorname{Id}_V) = (\operatorname{Id}_V \otimes \sigma_V) \circ (\sigma_V \otimes \operatorname{Id}_V) \circ (\operatorname{Id}_V \otimes \sigma_V).$$

A *braided morphism* is a morphism $f:(V,\sigma_V)\to (W,\sigma_W)$ respecting the braidings:

$$(f \otimes f) \circ \sigma_{V} = \sigma_{W} \circ (f \otimes f) : V \otimes V \to W \otimes W.$$

 \rightsquigarrow a category $\mathsf{Br}(\mathscr{C})$.

Braided categories vs. braided objects

braided categories	braided objects
"global" notion	"local" notion

Any object in a braided category is braided.

Remark

We should actually talk about weakly braided or pre-braided categories / objects, since we do not demand $c_{V,W}$ (or σ_V) to be invertible.

Braided categories vs. braided objects: a digression

Theorem (Folklore)

Denote by \mathcal{C}_{gl-br} the free braided category generated by a single object V. Then for each n one has a monoid isomorphism

$$\mathsf{End}_{\mathscr{C}_{gl-br}}(V^{\otimes n}) \xrightarrow{\sim} B_n^+$$

$$\mathsf{Id}_{i-1} \otimes_{C_{V/V}} \otimes \mathsf{Id}_{n-i-1} \longmapsto \sigma_i.$$

Here B_n^+ is the positive Artin braid monoid:

 \Rightarrow algebraically: generators $\sigma_1, \sigma_2, ..., \sigma_{n-1}$, subject to relations

$$\sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \qquad \text{if } |i-j| > 1, 1 \le i, j \le n-1, \qquad (Br_{C})$$

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \qquad \forall 1 \le i \le n-2; \qquad (Br_{YB})$$

→ topologically: braids with positive crossings only.

Braided categories vs. braided objects: a digression

Theorem (Folklore)

Denote by \mathscr{C}_{loc-br} the free monoidal category generated by a single braided object (V, σ_V) . Then for each n one has a monoid isomorphism

Here B_n^+ is the positive Artin braid monoid:

 \Rightarrow algebraically: generators $\sigma_1, \sigma_2, ..., \sigma_{n-1}$, subject to relations

$$\sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \qquad \text{if } |i-j| > 1, 1 \le i, j \le n-1, \qquad (Br_{C})$$

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \qquad \forall 1 \le i \le n-2; \qquad (Br_{YB})$$

→ topologically: braids with positive crossings only.

Braided categories vs. braided objects: a digression

Theorem (L., 2012)

Denote by $\mathcal{C}_{loc-gl-br}$ the free symmetric category generated by a single braided object (V, σ_V) . Then for each n one has a monoid isomorphism

$$\boxed{ \operatorname{End}_{\mathscr{C}_{loc-gl-br}}(V^{\otimes n}) \overset{\sim}{\longrightarrow} VB_n^+ }$$

$$\operatorname{Id}_{i-1} \otimes c_{V,V} \otimes \operatorname{Id}_{n-i-1} \longmapsto \zeta_i,$$

$$\operatorname{Id}_{i-1} \otimes \sigma_V \otimes \operatorname{Id}_{n-i-1} \longmapsto \sigma_i.$$

Here VB_n^+ is the positive virtual braid monoid (Kauffman, Vershinin):

algebraically: generators $\{\sigma_i, \zeta_i, 1 \le i \le n-1\}$, subject to $\checkmark(Br_C)$ and (Br_{YB}) for the σ_i 's; $\checkmark(Br_C)$ and (Br_{YB}) for the ζ_i 's; $\zeta_i\zeta_i = 1 \quad \forall i$; $\sigma_i\zeta_j = \zeta_j\sigma_i \quad \forall |i-j| > 1$, $\zeta_i\zeta_{i+1}\sigma_i = \sigma_{i+1}\zeta_i\zeta_{i+1} \quad \forall i$ mixed relations.

- 1 Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathbf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

Unital associative algebras

Definition

A unital associative algebra (= UAA) in $\mathscr C$ is an object V together with morphisms $\mu: V \otimes V \to V$ and $v: I \to V$, satisfying the associativity and the unit conditions:

$$\mu \circ (\mu \otimes \operatorname{Id}_{V}) = \mu \circ (\operatorname{Id}_{V} \otimes \mu) : V^{3} \to V,$$

$$\mu \circ (v \otimes \operatorname{Id}_{V}) = \mu \circ (\operatorname{Id}_{V} \otimes v) = \operatorname{Id}_{V}.$$

 \rightsquigarrow category $\mathsf{Alg}(\mathscr{C})$.

UAAs as braided objects

Theorem (L., 2012)

One has a functor

$$\begin{bmatrix}
\mathsf{Alg}(\mathscr{C}) \longrightarrow \mathsf{Br}(\mathscr{C}) \\
(V, \mu, \nu) \longmapsto (V, \sigma_{\mathsf{Ass}} = \nu \otimes \mu), \\
(f : V \to W) \longmapsto (f : V \to W).$$

UAAs as braided objects

Definition

Denote by $Br_{\bullet}(\mathscr{C})$ the category of *pointed braided objects* in \mathscr{C} :

- \rightarrow objects: braided objects V endowed with a "unit" $v: I \rightarrow V$;
- ightharpoonup morphisms in $\operatorname{\mathscr{C}}$ respecting units, i.e.

 $f \circ v_V = v_W$ for $f: V \to W$.

A better theorem (L., 2012)

One has a fully faithful functor

$$\begin{array}{c} \mathbf{Alg}(\mathscr{C}) & \hookrightarrow \mathbf{Br}_{\bullet}(\mathscr{C}) \\ (V, \mu, \nu) & \longmapsto (V, \sigma_{Ass}, \nu), \\ (f: V \to W) & \longmapsto (f: V \to W). \end{array}$$

UAAs as braided objects

Remarks

- $\sigma_{Ass} \circ \sigma_{Ass} = \sigma_{Ass} \implies \text{highly non-invertible.}$
- $\sigma = v \otimes \mu + \mu \otimes v \text{Id}$ also encodes the associativity (Nuss, Nichita).
- Dual picture: $coAlg(\mathscr{C}) \hookrightarrow Br^{\bullet}(\mathscr{C})$

$$\mathsf{coAlg}(\mathscr{C}) \longrightarrow \mathsf{Br}^{\bullet}(\mathscr{C}) \longleftarrow \mathsf{Alg}(\mathscr{C})$$

Unital Leinbiz algebras

Definition

A unital Leinbiz algebra (= ULA) in a symmetric preadditive category $\mathscr C$ is an object V together with morphisms $[,]:V\otimes V\to V$ and $v:I\to V$, satisfying the Leinbiz and the Lie unit conditions:

$$[,] \circ (\operatorname{Id}_{V} \otimes [,]) = [,] \circ ([,] \otimes \operatorname{Id}_{V}) - [,] \circ ([,] \otimes \operatorname{Id}_{V}) \circ (\operatorname{Id}_{V} \otimes c_{V,V}) : V^{\otimes 3} \to V,$$
$$[,] \circ (\operatorname{Id}_{V} \otimes v) = [,] \circ (v \otimes \operatorname{Id}_{V}) = 0 : V \to V.$$

 \rightsquigarrow category Lei(\mathscr{C}).

A non-commutative version of Lie algebras (Loday, Cuvier).

ULAs as braided objects

Theorem (L., 2012)

One has a fully faithful functor

ULAs as braided objects

Theorem (L., 2012)

$$\left[\text{Lei}(\mathscr{C}) \longleftrightarrow \text{Br}_{\bullet}(\mathscr{C}) \right] \\
 (V, [,], v) \longleftrightarrow (V, \sigma_{Lei} = v \otimes [,] + c_{V,V}, v).$$

Remarks

Yang-Baxter for $\sigma_{Lei} \iff$ Leibniz condition for [,].

- A conceptual explication of the choice of the lift of the Jacobi condition.
- \bullet σ_{Iei} was previously considered for Lie algebras.
- \circ σ_{Lei} is invertible.
- Dual picture: co-Leibniz algebras.

- 1 Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathbf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

Braided modules: definition

Definition

A right braided module over a braided object (V, σ) in $\mathscr C$ is an object $M \in \mathsf{Ob}(\mathscr C)$ equipped with a morphism $\rho: M \otimes V \to M$ satisfying

$$\rho \circ (\rho \otimes \operatorname{Id}_V) \circ (\operatorname{Id}_M \otimes \sigma) = \rho \circ (\rho \otimes \operatorname{Id}_V) : M \otimes V \otimes V \to M.$$

Braided modules: examples

All braided modules are supposed *normalized* here, i.e. $\rho \circ (Id_M \otimes v) = Id_M$.

Examples

UAAs: usual modules over associative algebras

$$\rho \circ (\rho \otimes \operatorname{Id}_V) = \rho \circ (\operatorname{Id}_M \otimes \mu)$$

$$\rho \rho = \rho \mu = \rho \mu$$

ULAs: usual Leibniz modules

$$\rho \circ (\rho \otimes \operatorname{Id}_{V}) = \rho \circ (\rho \otimes \operatorname{Id}_{V}) \circ (\operatorname{Id}_{M} \otimes c_{V,V}) + \rho \circ (\operatorname{Id}_{M} \otimes [,])$$

- Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathbf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

Theorem (L.,2012)

In a preadditive monoidal category &, take

- ✓ a braided object (V,σ) ;
- \checkmark a right and a left braided V-modules (M,ρ) and (N,λ).

Then the morphisms

$$\rho d_n := \sum_{i=1}^n (-1)^{i-1} \rho d_{n;i}, \qquad d_n^{\lambda} := \sum_{i=1}^n (-1)^{i-1} d_{n;i}^{\lambda},
\rho d_{n;i} := (\rho \otimes \operatorname{Id}_V^{n-1} \otimes \operatorname{Id}_N) \circ (\operatorname{Id}_M \otimes (\sigma_2 \circ \sigma_3 \circ \cdots \circ \sigma_i) \otimes \operatorname{Id}_N)
d_{n;i}^{\lambda} := (\operatorname{Id}_M \otimes \operatorname{Id}_V^{n-1} \otimes \lambda) \circ (\operatorname{Id}_M \otimes (\sigma_n \circ \cdots \circ \sigma_{i+1}) \otimes \operatorname{Id}_N)$$

define a bidegree -1 tensor bidifferential on $M \otimes V^{\otimes n} \otimes N$. (Here $\sigma_j = \operatorname{Id}_M \otimes \operatorname{Id}_V^{j-2} \otimes \sigma \otimes \operatorname{Id}_V^{n-j} \otimes \operatorname{Id}_N$.)

Theorem (L.,2012)

$$\rho d_{n} := \sum_{i=1}^{n} (-1)^{i-1} \rho d_{n;i}, \qquad d_{n}^{\lambda} := \sum_{i=1}^{n} (-1)^{i-1} d_{n;i}^{\lambda},
\rho d_{n;i} := (\rho \otimes \operatorname{Id}_{V}^{n-1} \otimes \operatorname{Id}_{N}) \circ (\operatorname{Id}_{M} \otimes (\sigma_{2} \circ \sigma_{3} \circ \cdots \circ \sigma_{i}) \otimes \operatorname{Id}_{N})
d_{n;i}^{\lambda} := (\operatorname{Id}_{M} \otimes \operatorname{Id}_{V}^{n-1} \otimes \lambda) \circ (\operatorname{Id}_{M} \otimes (\sigma_{n} \circ \cdots \circ \sigma_{i+1}) \otimes \operatorname{Id}_{N})$$

(Here
$$\sigma_i = \operatorname{Id}_M \otimes \operatorname{Id}_V^{i-2} \otimes \sigma \otimes \operatorname{Id}_V^{n-i} \otimes \operatorname{Id}_N$$
.)

Theorem (L.,2012)

$$\rho d_n := \sum_{i=1}^n (-1)^{i-1} \rho d_{n;i}, \qquad d_n^{\lambda} := \sum_{i=1}^n (-1)^{i-1} d_{n;i}^{\lambda},
\rho d_{n;i} := (\rho \otimes \operatorname{Id}_V^{n-1} \otimes \operatorname{Id}_N) \circ (\operatorname{Id}_M \otimes (\sigma_2 \circ \sigma_3 \circ \cdots \circ \sigma_i) \otimes \operatorname{Id}_N)
d_{n;i}^{\lambda} := (\operatorname{Id}_M \otimes \operatorname{Id}_V^{n-1} \otimes \lambda) \circ (\operatorname{Id}_M \otimes (\sigma_n \circ \cdots \circ \sigma_{i+1}) \otimes \operatorname{Id}_N)$$

(Here
$$\sigma_i = \operatorname{Id}_M \otimes \operatorname{Id}_V^{i-2} \otimes \sigma \otimes \operatorname{Id}_V^{n-i} \otimes \operatorname{Id}_N$$
.)

Remarks

- A family of differentials \rightsquigarrow linear combinations.
- A pre-bisimplicial (or pre-cubical) structure on $M \otimes V^{\otimes n} \otimes N$, which can be upgraded into a weakly bisimplicial one (a "nice" comultiplication on $V \rightsquigarrow$ degeneracies).
- The construction is functorial.
- The differentials can be interpreted in terms of quantum shuffles (Rosso).
- A generalization: Loday's hyperboundaries $M \otimes V^{\otimes n} \otimes N \to M \otimes V^{\otimes n-k} \otimes N$.
- Interesting homology morphisms.
- Duality: a cohomology version.

Braided homology: examples

Examples

```
    UAA V + algebra module M ↔
    braided object (V, σ<sub>Ass</sub>) + braided module M ↔
    bar / Hochschild complex
    ULA V + Leibniz module M ↔
    braided object (V, σ<sub>Lei</sub>) + braided module M ↔
    Leibniz (=non-commutative Chevalley-Eilenberg) complex
```

algebraic structure → chain complex

Braided homology: examples

Examples

```
• UAA V + algebra module M \rightsquigarrow braided object (V, \sigma_{Ass}) + braided module M \rightsquigarrow bar / Hochschild complex
```

• ULA V + Leibniz module $M \rightsquigarrow$ braided object (V, σ_{Lei}) + braided module $M \rightsquigarrow$ Leibniz (=non-commutative Chevalley-Eilenberg) complex

algebraic structure case by case braiding Theorem chain complex

- 1 Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathsf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

Braided systems: definition

Definition

A braided system in $\mathscr C$ is a family $V_1, V_2, ..., V_r \in \mathrm{Ob}(\mathscr C)$ endowed with a multi-braiding, i.e. morphisms $\sigma_{i,j}: V_i \otimes V_j \to V_j \otimes V_i \ \forall \ \underline{i \leqslant j}$, satisfying the multi-Yang-Baxter equation

$$(\sigma_{j,k}\otimes\mathsf{Id}_i)\circ(\mathsf{Id}_j\otimes\sigma_{i,k})\circ(\sigma_{i,j}\otimes\mathsf{Id}_k)=(\mathsf{Id}_k\otimes\sigma_{i,j})\circ(\sigma_{i,k}\otimes\mathsf{Id}_j)\circ(\mathsf{Id}_i\otimes\sigma_{j,k})$$

on all the tensor products $V_i \otimes V_j \otimes V_k$ with $i \leq j \leq k$.

 \rightsquigarrow category $_r$ BrSyst(\mathscr{C}).

Braided systems: representations and homology

Definition

A braided system in $\mathscr C$ is a family $V_1, V_2, \ldots, V_r \in \mathsf{Ob}(\mathscr C)$ endowed with a multi-braiding $\sigma_{i,j}: V_i \otimes V_j \to V_j \otimes V_i \ \forall \ \underline{i \leq j}$, satisfying YBE on all the tensor products $V_i \otimes V_j \otimes V_k$ with $i \leq j \leq k$.

A multi-braided module over a $(\overline{V}, \overline{\sigma}) \in {}_r \mathbf{BrSyst}(\mathscr{C})$ is an $M \in \mathsf{Ob}(\mathscr{C})$ equipped with $(\rho_i : M \otimes V_i \to M)_{1 \le i \le r}$ satisfying $\forall i \le j$

$$\rho_i \circ (\rho_i \otimes \mathsf{Id}_i) = \rho_i \circ (\rho_i \otimes \mathsf{Id}_i) \circ (\mathsf{Id}_M \otimes \sigma_{i,j}) : M \otimes V_i \otimes V_j \to M.$$

Theorem (L.,2012)

A bidifferential structure on $M \otimes T(\overline{V})_n^{\rightarrow} \otimes N$, where $T(\overline{V})_n^{\rightarrow}$ is the direct sum of all the tensor products of type

$$V_1^{\otimes m_1} \otimes V_2^{\otimes m_2} \otimes \cdots \otimes V_r^{\otimes m_r}, \qquad m_i \geq 0, \sum m_i = n.$$

Example: bialgebras as a braided system

Theorem (L.,2012)

The groupoid *Bialg(vect_k) of bialgebras and bialgebra <u>iso</u>morphisms in \mathbf{vect}_k is a subcategory of the groupoid of size 2 bipointed braided systems:

*Bialg
$$\longrightarrow$$
 BrSyst
$$(H, \mu, \nu, \Delta, \varepsilon) \longmapsto \overline{H}_{bi} := (V_1 := H, V_2 := H^*; \quad \nu, \varepsilon^*; \varepsilon, \nu^*;$$

$$\sigma_{1,1} := \sigma_{Ass}^r(H), \sigma_{2,2} := \sigma_{Ass}(H^*), \sigma_{1,2} = \sigma_{bi}),$$

$$f \longmapsto (f, (f^{-1})^*),$$

where $\sigma_{bi}(h \otimes l) := \langle l_{(1)}, h_{(2)} \rangle l_{(2)} \otimes h_{(1)}$.

$$\sigma_{H,H} = \mu^* \qquad \sigma_{H,H^*} = \sigma_{H^*,H^*} = \varepsilon^* \qquad \sigma_{H^*,H^*} = \varepsilon^* \qquad \sigma_{H^*,H^*} = \sigma_$$

Example: bialgebras as a braided systems

- 1 Braided Categories and Braided Objects
- 2 "Algebraic" Subcategories of $\mathbf{Br}(\mathscr{C})$
- 3 A Representation Theory for Braided Objects
- 4 A Homology Theory for Braided Objects
- 5 Increasing the Complexity: Multi-Component Braidings
- 6 Braidings as a Unifying Interpretation for Algebraic Structures

Summary: "braided" interpretation for algebraic structures

(multi-)braiding	\leftarrow	algebraic structure
$_r$ Br $Syst(\mathscr{C})$	←	$Struc(\mathscr{C})$
YBE	\Leftrightarrow	the defining relation
invertibility	\Leftrightarrow	algebraic properties
braided morphisms	~	structural morphisms
braided modules	~	usual modules
braided differentials	⊇	usual differentials

Examples

→ UAAs → bialgebras

- → self-distributive structures
- → ULAs → crossed / smash products → Yetter-Drinfel'd modules

"algebraic structure = braiding" |

Thank you!

