Victoria LEBED Joint work with Patrick DEHORNOY

OCAMI, Osaka City University

Topology Symposium, Tohoku University, July 29, 2014

	A_3	1	2	3	4	5	6	7	8	
	1	2	4	6	8	2	4	6	8	
	2	3	4	7	8	3	4	7	8	
$0, 1, 2, 3, \dots;$	3	4	8	4	8	4	8	4	8	
$\aleph_0, \aleph_1, \aleph_2, \ldots;$	4	5	6	7	8	5	6	7	8	
ر (1) ک	5	6	8	6	8	6	8	6	8	
ω, \ldots	6	7	8	7	8	7	8	7	8	
	7	8	8	8	8	8	8	8	8	
	8	1	2	3	4	5	6	7	8	

Part 1

A Laver table is...

Basic definitions

A shelf (= self-distributive structure) is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group G, $f \triangleright g = fgf^{-1}$.

(SD)

Basic definitions

A **shelf** (= self-distributive structure)

is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group G, $f \triangleright g = fgf^{-1}$.

$$\mathcal{F}_1$$

is a free shelf generated by a single element $\gamma.$

(SD

Basic definitions

A **shelf** (= self-distributive structure)

is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group
$$G$$
, $f \triangleright g = fgf^{-1}$.

$$\mathcal{F}_1$$

is a free shelf generated by a single element $\boldsymbol{\gamma}.$

Laver table A_n

is the unique shelf ({ 1,2,3,...,2ⁿ},
$$\triangleright$$
) satisfying
 $a \triangleright 1 \equiv a+1 \mod 2^n$ (Init)

(SD)

Basic definitions

A **shelf** (= self-distributive structure)

is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group
$$G$$
, $f \triangleright g = fgf^{-1}$.

$$\mathcal{F}_1$$

is a free shelf generated by a single element $\boldsymbol{\gamma}.$

Laver table A_n

is the unique shelf
$$(\{1, 2, 3, \dots, 2^n\}, \triangleright)$$
 satisfying
 $a \triangleright 1 \equiv a+1 \mod 2^n$ (Init)

Theorem (Laver, '95): properties (SD) and (Init) uniquely define \triangleright .

(SD

Basic definitions

A **shelf** (= self-distributive structure)

is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group
$$G$$
, $f \triangleright g = fgf^{-1}$.

$$\mathcal{F}_1$$

is a free shelf generated by a single element $\gamma.$

Laver table A_n

is the unique shelf
$$(\{1, 2, 3, \dots, 2^n\}, \triangleright)$$
 satisfying
 $a \triangleright 1 \equiv a+1 \mod 2^n$ (Init)

Theorem (Laver, '95): properties (SD) and (Init) uniquely define \triangleright . \bigwedge False for $\{1, 2, 3, ..., q\}$ with $q \neq 2^n$.

Victoria LEBED (OCAMI)

(SD

Basic definitions

A **shelf** (= self-distributive structure)

is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group
$$G$$
, $f \triangleright g = fgf^{-1}$.

$$\mathcal{F}_1$$

is a free shelf generated by a single element $\boldsymbol{\gamma}.$

Laver table A_n

is the unique shelf ({ 1,2,3,...,2ⁿ },
$$\triangleright$$
) satisfying
 $a \triangleright 1 \equiv a+1 \mod 2^n$ (Init)

$$\begin{array}{ccc} \gamma & & (\gamma \triangleright \gamma) \triangleright \gamma \\ \gamma \triangleright \gamma & & ((\gamma \triangleright \gamma) \triangleright \gamma) \triangleright \gamma \end{array}$$

Victoria LEBED (OCAMI)

. . .

(SD)

Basic definitions

A **shelf** (= self-distributive structure)

is a set S with an operation \triangleright satisfying

$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

Example: group
$$G$$
, $f \triangleright g = fgf^{-1}$.

$$\mathcal{F}_1$$

is a free shelf generated by a single element $\boldsymbol{\gamma}.$

Laver table A_n

is the unique shelf
$$(\{1, 2, 3, \dots, 2^n\}, \triangleright)$$
 satisfying
 $a \triangleright 1 \equiv a+1 \mod 2^n$ (Init)

$$egin{array}{lll} \gamma = 1 & (\gamma \triangleright \gamma) \triangleright \gamma = 3 \ \gamma \triangleright \gamma = 2 & ((\gamma \triangleright \gamma) \triangleright \gamma) \triangleright \gamma = 4 \end{array}$$

Victoria LEBED (OCAMI)

. . .

(SD)

Laver tables in Set Theory

Richard Laver

Laver tables in Set Theory: details

"Super-infinite" sets

Finite \iff every **self-embedding** is bijective. Infinite \iff admits a non-bijective self-embedding.

Example: \mathbb{N} is infinite ($n \mapsto n+1$ is a non-bijective self-embedding),

Laver tables in Set Theory: details

"Super-infinite" sets

Finite ↔ every **self-embedding** is bijective. Infinite ↔ admits a non-bijective self-embedding. Super-infinite ↔ admits a non-bijective **elementary** self-embedding.

Example: \mathbb{N} is infinite ($n \mapsto n+1$ is a non-bijective self-embedding),

Laver tables in Set Theory: details

"Super-infinite" sets

Finite \iff every **self-embedding** is bijective.

Infinite \iff admits a non-bijective self-embedding.

Super-infinite \iff admits a non-bijective **elementary** self-embedding.

Example: \mathbb{N} is infinite $(n \mapsto n+1 \text{ is a non-bijective self-embedding})$, but <u>not</u> super-infinite $(f \text{ is elementary} \Rightarrow f(1) = 1, f(n+1) = f(n) + 1)$.

Laver tables in Set Theory: details

"Super-infinite" sets

Finite \iff every **self-embedding** is bijective.

 ${\sf Infinite} \Longleftrightarrow {\sf admits} \; {\sf a} \; {\sf non-bijective} \; {\sf self-embedding}.$

Super-infinite \iff admits a non-bijective **elementary** self-embedding.

Example: \mathbb{N} is infinite $(n \mapsto n+1 \text{ is a non-bijective self-embedding})$, but <u>not</u> super-infinite $(f \text{ is elementary} \Rightarrow f(1) = 1, f(n+1) = f(n) + 1)$.

super-infinite	infinite
infinite	finite

Laver tables in Set Theory: details

"Super-infinite" sets

Finite \iff every **self-embedding** is bijective.

 ${\sf Infinite} \Longleftrightarrow {\sf admits} \; {\sf a} \; {\sf non-bijective} \; {\sf self-embedding}.$

Super-infinite \iff admits a non-bijective **elementary** self-embedding.

Example: \mathbb{N} is infinite $(n \mapsto n+1 \text{ is a non-bijective self-embedding})$, but <u>not</u> super-infinite $(f \text{ is elementary} \Rightarrow f(1) = 1, f(n+1) = f(n) + 1)$.

super-infinite	infinite
infinite	finite

Axiom I3

 V_{λ} (a certain limit rank) is super-infinite.

Laver tables in Set Theory: details

"Super-infinite" sets

Finite \iff every **self-embedding** is bijective.

 ${\sf Infinite} \Longleftrightarrow {\sf admits} \; {\sf a} \; {\sf non-bijective} \; {\sf self-embedding}.$

Super-infinite \iff admits a non-bijective **elementary** self-embedding.

Example: \mathbb{N} is infinite $(n \mapsto n+1 \text{ is a non-bijective self-embedding})$, but <u>not</u> super-infinite $(f \text{ is elementary} \Rightarrow f(1) = 1, f(n+1) = f(n) + 1)$.

super-infinite	_ infinite
infinite	finite

Axiom I3

 V_{λ} (a certain limit rank) is super-infinite.

🚹 13 can neither be proved nor refuted in Zermelo-Fraenkel system.

Laver tables in Set Theory: details

Self-embeddings Set $S \rightarrow \text{Emb}(S) := \{ f : S \hookrightarrow S \} \rightarrow \text{a shelf } (\text{Emb}(S), \triangleright)$ $f \triangleright g = \begin{cases} fgf^{-1} & \text{on the image } \text{Im}(f) & \text{of } f, \\ \text{Id} & \text{on the complement of } \text{Im}(f). \end{cases}$

Laver tables in Set Theory: details

Self-embeddings Set $S \rightarrow \text{Emb}(S) := \{ f : S \hookrightarrow S \} \rightarrow \text{a shelf } (\text{Emb}(S), \triangleright)$ $f \triangleright g = \begin{cases} fgf^{-1} & \text{on the image } \text{Im}(f) \text{ of } f, \\ \text{Id} & \text{on the complement of } \text{Im}(f). \end{cases}$

Axiom I3

 V_{λ} is super-infinite (= admits a non-bij. elementary self-embedding f_0).

Laver, 90's:

Laver tables in Set Theory: details

Self-embeddings Set $S \rightarrow \text{Emb}(S) := \{f : S \hookrightarrow S\} \rightarrow \text{a shelf }(\text{Emb}(S), \triangleright)$ $f \triangleright g = \begin{cases} fgf^{-1} & \text{on the image } \text{Im}(f) \text{ of } f, \\ \text{Id} & \text{on the complement of } \text{Im}(f). \end{cases}$

Axiom I3

 V_{λ} is super-infinite (= admits a non-bij. elementary self-embedding f_0).

Laver, 90's:

$$\begin{array}{ll} & \circledast f_0 \text{ generates a sub-shelf } F \subseteq \operatorname{Emb}(V_\lambda), \text{ with } F \cong \mathcal{F}_1; \\ & \circledast F \text{ has quotients of size } 2^n & \longleftarrow \text{ Laver tables!} \end{array}$$

Laver tables in Set Theory: details

Self-embeddings Set $S \rightarrow \text{Emb}(S) := \{f : S \hookrightarrow S\} \rightarrow \text{a shelf }(\text{Emb}(S), \triangleright)$ $f \triangleright g = \begin{cases} fgf^{-1} & \text{on the image } \text{Im}(f) \text{ of } f, \\ \text{Id} & \text{on the complement of } \text{Im}(f). \end{cases}$

Axiom I3

 V_{λ} is super-infinite (= admits a non-bij. elementary self-embedding f_0).

Laver, 90's:

$$\begin{array}{ll} \text{I3} \Rightarrow & \overset{\circledast}{} f_0 \text{ generates a sub-shelf } F \subseteq \operatorname{Emb}(V_\lambda), \text{ with } F \cong \mathcal{F}_1; \\ & \overset{\circledast}{} F \text{ has quotients of size } 2^n & \swarrow & \operatorname{Laver tables!} \\ & \overset{\circledast}{} \underbrace{ \lim_{n \in \mathbb{N}} A_n \supset \mathcal{F}_1 } & \backsim & A_n \text{ are finite approximations of } \mathcal{F}_1 \end{array}$$

Going beyond Set Theory?

Elementary definition

$$A_n = \left(\left\{1, 2, 3, \dots, 2^n\right\}, \triangleright\right) \text{ satisfying}$$

$$\boxed{a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)} \qquad (SD)$$

$$\boxed{a \triangleright 1 \equiv a + 1 \mod 2^n} \qquad (Init)$$

Going beyond Set Theory?

Elementary definition

$$A_n = \left(\left\{1, 2, 3, \dots, 2^n\right\}, \triangleright\right) \text{ satisfying}$$

$$\boxed{a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)} \qquad (SD)$$

$$\boxed{a \triangleright 1 \equiv a + 1 \mod 2^n} \qquad (Init)$$

Elementary properties

A projective system of shelves:

$$p_n : A_n \longrightarrow A_{n-1},$$

 $a \longmapsto a \mod 2^{n-1}.$

Going beyond Set Theory?

Elementary definition

$$A_n = \left(\left\{1, 2, 3, \dots, 2^n\right\}, \triangleright\right) \text{ satisfying}$$

$$\boxed{a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)} \qquad (SD)$$

$$\boxed{a \triangleright 1 \equiv a + 1 \mod 2^n} \qquad (Init)$$

Elementary properties

& A projective system of shelves:

$$p_n : A_n \longrightarrow A_{n-1},$$

 $a \longmapsto a \mod 2^{n-1}.$

Periodic rows:

$$p \triangleright 1 ... periodic repetition ...= $p + 1$ = $2^n$$$

Going beyond Set Theory?

Elementary definition

$$A_n = \left(\left\{1, 2, 3, \dots, 2^n\right\}, \triangleright\right) \text{ satisfying}$$

$$\boxed{a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)} \qquad (SD)$$

$$\boxed{a \triangleright 1 \equiv a + 1 \mod 2^n} \qquad (Init)$$

Elementary properties

& A projective system of shelves:

$$p_n : A_n \longrightarrow A_{n-1},$$

 $a \longmapsto a \mod 2^{n-1}.$

Periodic rows:

Going beyond Set Theory?

Elementary properties

 A_n is monogenerated (generator: 1).

Going beyond Set Theory?

Elementary properties

 A_n is monogenerated (generator: 1).

$$A_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

$$1 \leftrightarrow \gamma$$

$$2 \leftrightarrow \gamma \triangleright \gamma$$

$$3 \leftrightarrow (\gamma \triangleright \gamma) \triangleright \gamma$$

$$4 \leftrightarrow ((\gamma \triangleright \gamma) \triangleright \gamma) \triangleright \gamma \qquad \dots$$

Going beyond Set Theory?

Elementary properties

 A_n is monogenerated (generator: 1).

$$\mathcal{A}_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

 $A_n \sim A_n \sim A_n$ all other finite monogenerated shelves (A. Drápal).

Going beyond Set Theory?

Elementary properties

 A_n is monogenerated (generator: 1).

$$\mathcal{A}_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

A_n → all other finite monogenerated shelves (*A. Drápal*).
Some "nice" rows and columns

A _n	1	2	3	•	2^{n-1}	•	2 ⁿ	π_n
2 ^{<i>n</i>-1}	$2^{n-1}+1$	$2^{n-1}+2$	$2^{n-1}+3$		2 ⁿ	· · · · · · ·	2 ⁿ	2 ^{<i>n</i>-1}
$2^{n} - 3$	$2^{n}-2$	 2 ⁿ	2 ⁿ -2		2 ⁿ	· · · ·	2 ⁿ	2
$2^{n}-2$	$2^{n}-1$	2 ⁿ	$2^{n}-1$		2 ⁿ		2 ⁿ	2
$2^{n}-1$	2 ⁿ	2 ⁿ	2 ⁿ	• • •	2 ⁿ	• • •	2 ⁿ	1
2 ⁿ	1	2	3		2^{n-1}		2 ^{<i>n</i>}	2 ^{<i>n</i>}

Going beyond Set Theory?

Elementary properties

 A_n is monogenerated (generator: 1).

$$\mathcal{A}_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

A_n → all other finite monogenerated shelves (*A. Drápal*).
Some "nice" rows and columns

A _n	1	2	3	•	2^{n-1}	•	2 ⁿ	π_n
2 ^{<i>n</i>-1}	$2^{n-1}+1$	$$ $2^{n-1}+2$	$2^{n-1}+3$		2 ⁿ	· · · · · · ·	2 ⁿ	2 ^{<i>n</i>-1}
		•••				•••		
2 ^{<i>n</i>} -3	2 ⁿ -2	2 ⁿ	2 ⁿ -2	•••	2 ⁿ	• • •	2 ⁿ	2
2 ⁿ -2	$2^{n}-1$	2 ⁿ	$2^{n}-1$	• • •	2 ⁿ	• • •	2 ⁿ	2
$2^{n}-1$	2 ⁿ	2 ⁿ	2 ⁿ	• • •	2 ⁿ	• • •	2 ⁿ	1
2 ⁿ	1	2	3	•••	2^{n-1}	•••	2 ⁿ	2 ⁿ

No closed formulas for $p \triangleright q$, nor for $\pi_n(p)$.

Elementary properties

 $\bigotimes A_n$ is monogenerated (generator: 1).

$$A_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

A_n → all other finite monogenerated shelves (*A. Drápal*).
Some "nice" rows and columns

∧ No closed formulas for $p \triangleright q$, nor for $\pi_n(p)$.

Elementary conjectures

$$\mathfrak{B} \pi_n(1) \xrightarrow[n \to \infty]{} \infty.$$

Elementary properties

 A_n is monogenerated (generator: 1).

$$A_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

⊗ A_n ~ all other finite monogenerated shelves (A. Drápal).
⊗ Some "nice" rows and columns

∧ No closed formulas for $p \triangleright q$, nor for $\pi_n(p)$.

Elementary conjectures

$$\mathfrak{B} \pi_n(1) \xrightarrow[n \to \infty]{} \infty. \qquad \mathfrak{B} \pi_n(1) \leqslant \pi_n(2).$$

Elementary properties

 A_n is monogenerated (generator: 1).

$$A_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

⊗ A_n ~ all other finite monogenerated shelves (A. Drápal).
⊗ Some "nice" rows and columns

∧ No closed formulas for $p \triangleright q$, nor for $\pi_n(p)$.

Elementary conjectures

$$\bigotimes \lim_{n\in\mathbb{N}} A_n \supset \mathcal{F}_1.$$

鹞

Elementary properties

 A_n is monogenerated (generator: 1).

$$A_n \cong \mathcal{F}_1 / (\cdots ((\gamma \triangleright \gamma) \triangleright \gamma) \cdots) \triangleright \gamma = \gamma$$

Some "nice" rows and columns
Some "nice" rows and columns

∧ No closed formulas for $p \triangleright q$, nor for $\pi_n(p)$.

Elementary conjectures

$$\mathfrak{B} \pi_n(1) \xrightarrow[n \to \infty]{} \infty. \qquad \mathfrak{B} \pi_n(1) \leqslant \pi_n(2)$$

$$\bigotimes \lim_{n\in\mathbb{N}}A_n\supset \mathcal{F}_1.$$

A Theorems under Axiom I3!

A ₀	1						
1	1		A_2	1	2	3	4
	-		1	2	4	2	4
			2	3	4	3	4
A_1	1	2	3	4	4	4	4
1	2	2	4	1	2	3	4
2	1	2					

A ₃	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

A_0	1						
1	1		A_2	1	2	3	4
	-		1	2	4	2	4
	_		2	3	4	3	4
A_1	1	2	3	4	4	4	4
1	2	2	4	1	2	3	4
2	1	2					

<i>A</i> ₃	1	2	3	4	5	6	7	8	
1	2	4	6	8	2	4	6	8	$\pi_3(1) = 4$
2	3	4	7	8	3	4	7	8	$\pi_3(2) = 4$
3	4	8	4	8	4	8	4	8	$\pi_3(3) = 2$
4	5	6	7	8	5	6	7	8	$\pi_{3}(4) = 4$
5	6	8	6	8	6	8	6	8	$\pi_{3}(5) = 2$
6	7	8	7	8	7	8	7	8	$\pi_3(6) = 2$
7	8	8	8	8	8	8	8	8	$\pi_{3}(7) = 1$
8	1	2	3	4	5	6	7	8	$\pi_3(8)=8$

A_0	1						
1	1		A_2	1	2	3	4
			1	2	4	2	4
			2	3	4	3	4
A_1	1	2	3	4	4	4	4
1	2	2	4	1	2	3	4
2	1	2				•	

A ₃	1	2	3	4	5	6	7	8									
1	2	4	6	8	2	4	6	8	$\pi_{3}(1) = 4$								
2	3	4	7	8	3	4	7	8	$\pi_3(2) = 4$								
3	4	8	4	8	4	8	4	8	$\pi_3(3) = 2$								
4	5	6	7	8	5	6	7	8	$\pi_{3}(4) = 4$								
5	6	8	6	8	6	8	6	8	$\pi_{3}(5) = 2$								
6	7	8	7	8	7	8	7	8	$\pi_{3}(6) = 2$								
7	8	8	8	8	8	8	8	8	$\pi_{3}(7) = 1$								
8	1	2	3	4	5	6	7	8	$\pi_3(8)=8$								
_	A_4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
---	-------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
	1	2	12	14	16	2	12	14	16	2	12	14	16	2	12	14	16
	2	3	12	15	16	3	12	15	16	3	12	15	16	3	12	15	16
	3	4	8	12	16	4	8	12	16	4	8	12	16	4	8	12	16
	4	5	6	7	8	13	14	15	16	5	6	7	8	13	14	15	16
	5	6	8	14	16	6	8	14	16	6	8	14	16	6	8	14	16
	6	7	8	15	16	7	8	15	16	7	8	15	16	7	8	15	16
	7	8	16	8	16	8	16	8	16	8	16	8	16	8	16	8	16
	8	9	10	11	12	13	14	15	16	9	10	11	12	13	14	15	16
	9	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
	10	11	12	15	16	11	12	15	16	11	12	15	16	11	12	15	16
	11	12	16	12	16	12	16	12	16	12	16	12	16	12	16	12	16
	12	13	14	15	16	13	14	15	16	13	14	15	16	13	14	15	16
	13	14	16	14	16	14	16	14	16	14	16	14	16	14	16	14	16
	14	15	16	15	16	15	16	15	16	15	16	15	16	15	16	15	16
	15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
	16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

_	A_4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1	2	12	14	16	2	12	14	16	2	12	14	16	2	12	14	16
	2	3	12	15	16	3	12	15	16	3	12	15	16	3	12	15	16
	3	4	8	12	16	4	8	12	16	4	8	12	16	4	8	12	16
	4	5	6	7	8	13	14	15	16	5	6	7	8	13	14	15	16
	5	6	8	14	16	6	8	14	16	6	8	14	16	6	8	14	16
	6	7	8	15	16	7	8	15	16	7	8	15	16	7	8	15	16
	7	8	16	8	16	8	16	8	16	8	16	8	16	8	16	8	16
	8	9	10	11	12	13	14	15	16	9	10	11	12	13	14	15	16
	9	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
	10	11	12	15	16	11	12	15	16	11	12	15	16	11	12	15	16
	11	12	16	12	16	12	16	12	16	12	16	12	16	12	16	12	16
	12	13	14	15	16	13	14	15	16	13	14	15	16	13	14	15	16
	13	14	16	14	16	14	16	14	16	14	16	14	16	14	16	14	16
	14	15	16	15	16	15	16	15	16	15	16	15	16	15	16	15	16
	15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
	16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

A_4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	2	12	14	16	2	12	14	16	2	12	14	16	2	12	14	16
2	3	12	15	16	3	12	15	16	3	12	15	16	3	12	15	16
3	4	8	12	16	4	8	12	16	4	8	12	16	4	8	12	16
4	5	6	7	8	13	14	15	16	5	6	7	8	13	14	15	16
5	6	8	14	16	6	8	14	16	6	8	14	16	6	8	14	16
6	7	8	15	16	7	8	15	16	7	8	15	16	7	8	15	16
7	8	16	8	16	8	16	8	16	8	16	8	16	8	16	8	16
8	9	10	11	12	13	14	15	16	9	10	11	12	13	14	15	16
9	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
10	11	12	15	16	11	12	15	16	11	12	15	16	11	12	15	16
11	12	16	12	16	12	16	12	16	12	16	12	16	12	16	12	16
12	13	14	15	16	13	14	15	16	13	14	15	16	13	14	15	16
13	14	16	14	16	14	16	14	16	14	16	14	16	14	16	14	16
14	15	16	15	16	15	16	15	16	15	16	15	16	15	16	15	16
15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Rich combinatorics.

Part 2

Dreams: braid and knot invariants based on Laver tables

Laver tables in Topology

Patrick Dehornoy

 $\mathsf{RIII} \quad \leftrightarrow \quad a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c) \quad \mathsf{(SD)}$

positive braid invariants shelf

Victoria LEBED (OCAMI)

positive braid invariants colorings shelf

Victoria LEBED (OCAMI)

braid invariants $\stackrel{\text{colorings}}{\leadsto}$ rack

Victoria LEBED (OCAMI)

\mathcal{F}_1 -colorings for arbitrary braids?

\mathcal{F}_1 -colorings for arbitrary braids?

positive braid invariants $\overset{\text{colorings}}{\longleftrightarrow} \mathcal{F}_1$

Question: What about arbitrary braid invariants?

\mathcal{F}_1 -colorings for arbitrary braids?

positive braid invariants $\overset{\text{colorings}}{\leadsto} \mathcal{F}_1$

Question: What about <u>arbitrary</u> braid invariants? **Problem:** \mathcal{F}_1 is a shelf, but <u>not</u> a rack. (Map $b \mapsto \gamma \triangleright b$ is not surjective $\iff \gamma \neq \gamma \triangleright b$.)

\mathcal{F}_1 -colorings for arbitrary braids?

positive braid invariants $\overset{\text{colorings}}{\leadsto} \mathcal{F}_1$

Question: What about <u>arbitrary</u> braid invariants? **Problem:** \mathcal{F}_1 is a shelf, but <u>not</u> a rack. (Map $b \mapsto \gamma \triangleright b$ is not surjective $\iff \gamma \neq \gamma \triangleright b$.) **Solution** (Dehornoy): partial colorings.

\mathcal{F}_1 -colorings for arbitrary braids?

positive braid invariants $\stackrel{\text{colorings}}{\leadsto} \mathcal{F}_1$

Question: What about <u>arbitrary</u> braid invariants? **Problem:** \mathcal{F}_1 is a shelf, but <u>not</u> a rack. (Map $b \mapsto \gamma \triangleright b$ is not surjective $\iff \gamma \neq \gamma \triangleright b$.) **Solution** (Dehornoy): partial colorings.

 (S, \triangleright) is a rack \iff the color propagation map is bijective.

\mathcal{F}_1 -colorings for arbitrary braids?

positive braid invariants $\stackrel{\text{colorings}}{\leadsto} \mathcal{F}_1$

Question: What about <u>arbitrary</u> braid invariants? **Problem:** \mathcal{F}_1 is a shelf, but <u>not</u> a rack. (Map $b \mapsto \gamma \triangleright b$ is not surjective $\iff \gamma \neq \gamma \triangleright b$.) **Solution** (Dehornoy): partial colorings.

 (S, \triangleright) is a rack \iff the color propagation map is bijective.

For \mathcal{F}_1 , the map σ is only injective \implies partially invertible.

\mathcal{F}_1 -colorings for arbitrary braids?

Normal form for braids: $\beta = \beta_{-}\beta_{+}$, β_{-} negative, β_{+} positive.

\mathcal{F}_1 -colorings for arbitrary braids?

Normal form for braids: $\beta = \beta_{-}\beta_{+}$, β_{-} negative, β_{+} positive. \sim Colors $(\overline{a})\beta_{-}^{-1}$ are β -propagable:

$$(\overline{a})\beta_{-}^{-1}$$
 β_{-} \overline{a} β_{+} β_{+} $(\overline{a})\beta_{+}$

\mathcal{F}_1 -colorings for arbitrary braids?

Normal form for braids: $\beta = \beta_{-}\beta_{+}$, β_{-} negative, β_{+} positive. \sim Colors $(\overline{a})\beta_{-}^{-1}$ are β -propagable:

$$(\overline{a})\beta_{-}^{-1}$$
 β_{-} $\overline{\overline{a}}$ β_{+} β_{+} $(\overline{a})\beta_{+}$

Dehornoy's results

[®] ∀ *k*-braids β , β' , ∃ a common propagable color vector \overline{a} .

\mathcal{F}_1 -colorings for arbitrary braids?

Normal form for braids: $\beta = \beta_{-}\beta_{+}$, β_{-} negative, β_{+} positive. \sim Colors $(\overline{a})\beta_{-}^{-1}$ are β -propagable:

$$(\overline{a})\beta_{-}^{-1} \xrightarrow{\beta_{-}} \beta_{+} \xrightarrow{\overline{a}} \beta_{+} \xrightarrow{} (\overline{a})\beta_{+}$$

Dehornoy's results

[⊗] ∀ k-braids β, β', ∃ a common propagable color vector ā.
[⊗] (ā)β = (ā)β' ⇔ β ≃ β'.

\mathcal{F}_1 -colorings for arbitrary braids?

Normal form for braids: $\beta = \beta_{-}\beta_{+}$, β_{-} negative, β_{+} positive. \sim Colors $(\overline{a})\beta_{-}^{-1}$ are β -propagable:

$$(\overline{a})\beta_{-}^{-1}$$
 β_{-} $\overline{\overline{a}}$ β_{+} β_{+} $(\overline{a})\beta_{+}$

Dehornoy's results

♦ ∀ k-braids β, β', ∃ a common propagable color vector ā.
♦ (ā)β = (ā)β' ⇔ β ≃ β'.
♦ The left division relation induces a total ordering on F₁ and on F₁^{×k}:

$$a \mid_I b \iff b = a \triangleright c$$
 for some c

\mathcal{F}_1 -colorings for arbitrary braids?

Normal form for braids: $\beta = \beta_{-}\beta_{+}$, β_{-} negative, β_{+} positive. \sim Colors $(\overline{a})\beta_{-}^{-1}$ are β -propagable:

$$(\overline{a})\beta_{-}^{-1}$$
 β_{-} $\overline{\overline{a}}$ β_{+} $(\overline{a})\beta_{+}$

Dehornoy's results

\mathcal{F}_1 -colorings for arbitrary braids?

Dehornoy's results

[⊗] ∀ *k*-braids β , β' , ∃ a common propagable color vector \overline{a} . [⊗] (\overline{a}) $\beta = (\overline{a})\beta' \iff \beta \simeq \beta'$.

The left division relation induces a total ordering on \mathcal{F}_1 and on $\mathcal{F}_1^{\times k}$:

$$a \mid_{l} b \iff b = a \triangleright c \text{ for some } c$$

$$\beta < \beta' \iff (\overline{a})\beta \mid_{l} (\overline{a})\beta'$$
is a total left-invariant ordering of braids $(\beta < \beta' \implies \alpha\beta < \alpha\beta')$.

Remark: [®] Alternative constructions of <.

\mathcal{F}_1 -colorings for arbitrary braids?

Dehornoy's results

[⊗] ∀ *k*-braids β , β' , ∃ a common propagable color vector \overline{a} . [⊗] (\overline{a}) $\beta = (\overline{a})\beta' \iff \beta \simeq \beta'$.

The left division relation induces a total ordering on \mathcal{F}_1 and on $\mathcal{F}_1^{\times k}$:

$$a \mid_{l} b \iff b = a \triangleright c \text{ for some } c$$

$$\beta < \beta' \iff (\overline{a})\beta \mid_{l} (\overline{a})\beta'$$
is a total left-invariant ordering of braids $(\beta < \beta' \implies \alpha\beta < \alpha\beta')$.

Remark:
[®] Alternative constructions of <. [®] Applications: ✓ efficient algorithms for distinguishing braids, ✓ geometry of closed braids, etc.

 A_n -colorings for arbitrary braids?

positive braid invariants $\overset{\text{colorings}}{\longleftrightarrow}$ Laver tables

Question: What about arbitrary braid invariants?

A_n -colorings for arbitrary braids?

positive braid invariants $\stackrel{\text{colorings}}{\longleftrightarrow}$ Laver tables

Question: What about <u>arbitrary</u> braid invariants? **Problem:** The color propagation map σ is not even injective: $\sigma(2^n - 1, b) = ((2^n - 1) \triangleright b, 2^n - 1) = (2^n, 2^n - 1).$

A_n -colorings for arbitrary braids?

positive braid invariants $\overset{\text{colorings}}{\backsim}$ Laver tables

Question: What about <u>arbitrary</u> braid invariants? **Problem:** The color propagation map σ is not even injective: $\sigma(2^n - 1, b) = ((2^n - 1) \triangleright b, 2^n - 1) = (2^n, 2^n - 1).$

Motivation: $\$ Conjecturally, $A_n \xrightarrow[n \to \infty]{} A_{\infty} \supseteq \mathcal{F}_1$.

A_n -colorings for arbitrary braids?

positive braid invariants $\overset{\text{colorings}}{\backsim}$ Laver tables

Question: What about <u>arbitrary</u> braid invariants? **Problem:** The color propagation map σ is not even injective: $\sigma(2^n - 1, b) = ((2^n - 1) \triangleright b, 2^n - 1) = (2^n, 2^n - 1).$

Motivation: $\[\ \ \otimes \]$ Conjecturally, $A_n \xrightarrow[n \to \infty]{} A_{\infty} \supseteq \mathcal{F}_1$. $\[\ \ \otimes \] A_n \]$ are finite.

Part 3

Reality: 2- and 3-cocycles for Laver tables

Reality: 2- and 3-cocycles for Laver tables

Shelf colorings revisited

Aim: Add flexibility to coloring invariants.

Reality: 2- and 3-cocycles for Laver tables

Shelf colorings revisited

Aim: Add flexibility to coloring invariants. **Method:** enrich colorings with weights

Reality: 2- and 3-cocycles for Laver tables

Shelf colorings revisited

Aim: Add flexibility to coloring invariants. **Method:** enrich colorings with weights

 $\sim\,$ 2- and 3- rack cocycles.

Shelf colorings revisited

Aim: Add flexibility to coloring invariants. Method: enrich colorings with weights \sim 2- and 3- rack cocycles.

Rack cohomology (Fenn-Rourke-Sanderson, '95) Shelf $(S, \triangleright) \rightsquigarrow$ complex $(\text{Hom}(S^{\times k}, \mathbb{Z}), d_{\mathbb{R}}^k) \rightsquigarrow H_{\mathbb{R}}^k(S)$ $(d_{\mathbb{R}}^k f)(a_1, \ldots, a_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(a_1, \ldots, a_{i-1}, a_i \triangleright a_{i+1}, \ldots, a_i \triangleright a_{k+1})$ $- f(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{k+1})).$

Shelf colorings revisited

Aim: Add flexibility to coloring invariants. Method: enrich colorings with weights \sim 2- and 3- rack cocycles.

Rack cohomology (Fenn-Rourke-Sanderson, '95) Shelf $(S, \triangleright) \sim \text{complex} (\text{Hom}(S^{\times k}, \mathbb{Z}), d_{\mathbb{R}}^k) \sim H_{\mathbb{R}}^k(S)$ $(d_{\mathbb{R}}^k f)(a_1, \dots, a_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(a_1, \dots, a_{i-1}, a_i \triangleright a_{i+1}, \dots, a_i \triangleright a_{k+1})$ $- f(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{k+1})).$

2-cocycles: maps $\phi : S \times S \rightarrow \mathbb{Z}$ satisfying

$$\phi(a,c) + \phi(a \triangleright b, a \triangleright c) = \phi(b,c) + \phi(a,b \triangleright c)$$

Cocycle invariants

Fix a 2-cocycle $\phi : S \times S \to \mathbb{Z}$: $\phi(a, c) + \phi(a \triangleright b, a \triangleright c) = \phi(b, c) + \phi(a, b \triangleright c)$ ϕ -weight (Carter-Jelsovsky-Kamada-Langford-Saito, '99):

Cocycle invariants

Cocycle invariants

Shadow cocycle invariants

Fix a 3-cocycle $\psi : S \times S \times S \rightarrow \mathbb{Z}$:

 $\psi(a, b, c \triangleright d) + \psi(a, c, d) + \psi(a \triangleright b, a \triangleright c, a \triangleright d) =$ $\psi(b, c, d) + \psi(a, b \triangleright c, b \triangleright d) + \psi(a, b, d)$

Shadow cocycle invariants

Fix a 3-cocycle $\psi : S \times S \times S \rightarrow \mathbb{Z}$:

 $\psi(a, b, c \triangleright d) + \psi(a, c, d) + \psi(a \triangleright b, a \triangleright c, a \triangleright d) = \psi(b, c, d) + \psi(a, b \triangleright c, b \triangleright d) + \psi(a, b, d)$

Shadow colorings:

ψ -weight:

Shadow cocycle invariants

Victoria LEBED (OCAMI)

Shadow cocycle invariants

2- and 3-cocycles for Laver tables

Theorem (Dehornoy-L., '14)
(1)
$$Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}$$
 basis: $\phi_{const}(a, b) = 1$ and coboundaries
 $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases}$ $1 \leqslant q < 2^{n}$

2- and 3-cocycles for Laver tables

Theorem (Dehornoy-L., '14)
2
$$Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}$$
 basis: $\phi_{const}(a, b) = 1$ and coboundaries
 $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases}$ $1 \leq q < 2^{n}$
2 $Z_{R}^{3}(A_{n}) \simeq \mathbb{Z}^{2^{2n}-2^{n}+1}$ basis: $\psi_{const}(a, b, c) = 1$ and explicit
 $\{0, \pm 1\}$ -valued coboundaries.

2- and 3-cocycles for Laver tables

Theorem (Dehornoy-L., '14)
a)
$$Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}$$
 basis: $\phi_{const}(a, b) = 1$ and coboundaries
 $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases}$
a) $Z_{R}^{3}(A_{n}) \simeq \mathbb{Z}^{2^{2n}-2^{n}+1}$ basis: $\psi_{const}(a, b, c) = 1$ and explicit
 $\{0, \pm 1\}$ -valued coboundaries.
a) $H_{R}^{k}(A_{n}) \simeq \mathbb{Z}$ $k \leq 3$.

2- and 3-cocycles for Laver tables

Theorem (Dehornoy-L., '14) (a) $Z_{\rm R}^2(A_n) \simeq \mathbb{Z}^{2^n}$ basis: $\phi_{const}(a, b) = 1$ and coboundaries $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases}$ (c) $Z_{\rm R}^3(A_n) \simeq \mathbb{Z}^{2^{2n}-2^n+1}$ basis: $\psi_{const}(a, b, c) = 1$ and explicit $\{0, \pm 1\}$ -valued coboundaries. (c) $H_{\rm R}^k(A_n) \simeq \mathbb{Z}$ $k \leq 3$.

Theorem (L., '14)

$$\begin{array}{c} \textcircled{1} \quad \boxed{Z_{\mathrm{R}}^{k}(A_{n}) \simeq \mathbb{Z}^{P_{k}(2^{n})}}, \ P_{k}(x) = \frac{x^{k} + x^{\alpha(k)}}{x+1}, \ \alpha(k) = \begin{cases} 1 & \text{if } k \text{ is even,} \\ 0 & \text{otherwise.} \end{cases} \\ \hline H_{\mathrm{R}}^{k}(A_{n}) \simeq \mathbb{Z} \quad \text{for all } k. \end{cases}$$

Victoria LEBED (OCAMI)

2- and 3-cocycles for Laver tables

Theorem (Dehornoy-L., '14)
a)
$$Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}$$
 basis: $\phi_{const}(a, b) = 1$ and coboundaries
 $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases}$
a) $Z_{R}^{3}(A_{n}) \simeq \mathbb{Z}^{2^{2n}-2^{n}+1}$ basis: $\psi_{const}(a, b, c) = 1$ and explicit
 $\{0, \pm 1\}$ -valued coboundaries.
a) $H_{R}^{k}(A_{n}) \simeq \mathbb{Z}$ $k \leq 3$.

Remark: 2-cocycles capture the combinatorics of the A_n .

2- and 3-cocycles for Laver tables

Theorem (Dehornoy-L., '14)
a)
$$Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}$$
 basis: $\phi_{const}(a, b) = 1$ and coboundaries
 $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases}$
a) $Z_{R}^{3}(A_{n}) \simeq \mathbb{Z}^{2^{2n}-2^{n}+1}$ basis: $\psi_{const}(a, b, c) = 1$ and explicit
 $\{0, \pm 1\}$ -valued coboundaries.
a) $H_{R}^{k}(A_{n}) \simeq \mathbb{Z}$ $k \leq 3$.

Remark: 2-cocycles capture the combinatorics of the A_n .

Periods via cocycles

$$\pi_n(p) = \min \{ q \mid \phi_{2^{n-1},n}(p,q) = 1 \}, p < 2^n.$$

¢1,3	$1 \phi_2$	2,3	1234	5678	$\phi_{3,3}$	123456	578	<i>ф</i> 4,3	$1\ 2\ 3\ 4\ 5\ 6\ 7\ 8$
1	1	1	$\cdot 1 \cdot \cdot$		1	$1 \cdot 1 \cdot 1$ ·	•••	1	$\cdots 1 \cdots \cdots$
2	1	2	$11\cdot\cdot$	$1 \cdot \cdot \cdot$	2	$\cdot \cdot 1 \cdot \cdot \cdot$	•••	2	$\cdots 1 \cdots \cdots$
3	1	3	$11\cdot\cdot$	$1 \cdot \cdot \cdot$	3	$1 \cdot 1 \cdot 1$ ·	•••	3	$\cdot 1 \cdot 1 \cdot 1 \cdot \cdot$
4	1	4	$\cdot 1 \cdot \cdot$		4	$\cdot \cdot 1 \cdot \cdot \cdot$	•••	4	$\cdots 1 \cdots \cdots$
5	1	5	$11\cdot\cdot$	$1 \cdot \cdot \cdot$	5	$1 \cdot 1 \cdot 1$ ·	•••	5	$\cdot 1 \cdot 1 \cdot 1 \cdot \cdot$
6	1	6	$11\cdot\cdot$	$1 \cdot \cdot \cdot$	6	$1 \cdot 1 \cdot 1$ ·	•••	6	$\cdot 1 \cdot 1 \cdot 1 \cdot \cdot$
7	1	7	$11\cdot\cdot$	$1 \cdot \cdot \cdot$	7	$1 \cdot 1 \cdot 1$ ·	•••	7	1111111
8	•	8			8		•••	8	
$\phi_{5,3}$	12	34	5678	$\phi_{6,3}$	123	45678	$\phi_{7,3}$	12	345678
$\phi_{5,3}$	12 1·	34	5678 $1\cdot\cdot\cdot$	$\frac{\phi_{6,3}}{1}$	123 ·1·	45678 · · 1 · ·	$\frac{\phi_{7,3}}{1}$	12 1·	$\begin{array}{c} 3 \hspace{0.5mm} 4 \hspace{0.5mm} 5 \hspace{0.5mm} 6 \hspace{0.5mm} 7 \hspace{0.5mm} 8 \\ 1 \hspace{0.5mm} \cdot \hspace{0.5mm} 1 \hspace{0.5mm} \cdot \hspace{0.5mm} 1 \hspace{0.5mm} \cdot \hspace{0.5mm} \end{array}$
$\phi_{5,3} \\ 1 \\ 2$	12 1· 1·	34	5678 1··· 1···	$\phi_{6,3} \ 1 \ 2$	123 ·1·	$ \begin{array}{r} 45678 \\ \cdot \cdot 1 \cdot \cdot \\ \cdot \cdot 1 \cdot \cdot \end{array} $	$\phi_{7,3}$ 1 2	12 1·	$\begin{array}{c} 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 1 \ \cdot \ 1 \ \cdot \ 1 \ \cdot \\ \cdot \ \cdot$
$\phi_{5,3} \\ 1 \\ 2 \\ 3$	12 1· 1· 1·	34	$ \begin{array}{r} 5 \ 6 \ 7 \ 8 \\ 1 \ \cdot \ \cdot \ \cdot \\ \end{array} $	$\phi_{6,3} \ 1 \ 2 \ 3$	123 ·1· ·1· 111	$ \begin{array}{r} 45678 \\ \cdot \cdot 1 \cdot \cdot \\ \cdot \cdot 1 \cdot \cdot \\ \cdot 1111 \cdot \\ \end{array} $	$\phi_{7,3}$ 1 2 3	12 1. 1.	$ \begin{array}{r} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \end{array} $
$\phi_{5,3} = 1$ 2 3 4	1 2 1 · 1 · 1 ·	34	5678 1 1 1	$\phi_{6,3} \ 1 \ 2 \ 3 \ 4$	123 ·1· ·1· 111	45678 · · 1 · · · 1 1 · · · 1 1 1 ·	$\phi_{7,3}$ 1 2 3 4	12 1. 1.	$\begin{array}{c} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot$
$\phi_{5,3} = 1$ 2 3 4 5	1 2 1 · 1 · 1 · . · 1 ·	34	$ \begin{array}{c} 5 & 6 & 7 & 8 \\ 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \end{array} $	$\phi_{6,3} = 1 = 2 = 3 = 4 = 5 = 5$	$ \begin{array}{r} 1 & 2 & 3 \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ 1 & 1 & 1 \\ \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \end{array} $	$ \begin{array}{c} 45678 \\ \cdot \cdot 1 \cdot \cdot \\ \cdot 111 \cdot \\ \cdot 1111 \cdot \\ \cdot \cdot 111 \cdot \\ \cdot \cdot 111 \cdot \\ \cdot \cdot 1 \cdot \\ \cdot \cdot 1 \cdot \\ \end{array} $	$\phi_{7,3}$ 1 2 3 4 5	12 1. 1. 1.	$ \begin{array}{r} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ 1 \cdot 1 \cdot 1 \cdot \end{array} $
$\phi_{5,3}$ 1 2 3 4 5 6	$ \begin{array}{c} 12\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} $	34	5 6 7 8 1 1 1 1 1 1 1 1	$\phi_{6,3} = 1 = 2 = 3 = 4 = 5 = 6 = 6 = 6 = 5 = 6 = 5 = 6 = 5 = 6 = 5 = 5$	$ \begin{array}{c} 123\\ \cdot1\cdot\\ \cdot1\cdot\\ 111\\ \cdot\cdot\\ \cdot1\cdot\\ \cdot1\cdot\\ \cdot1\cdot\\ \cdot1\cdot$	$\begin{array}{c} 45678 \\ \hline & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & 1 \\ & & \\ & & \\ & & \\ & & 1 \\ & & \\ & & \\ & & 1 \\ & & \\ \end{array}$	$\phi_{7,3}$ 1 2 3 4 5 6	12 1 1 1 1	$ \begin{array}{r} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ \end{array} $
$\phi_{5,3}$ 1 2 3 4 5 6 7	1 2 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\phi_{6,3} = 1 = 2 = 3 = 4 = 5 = 6 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7$	123 · 1 · · 1 · 111 · · · · 1 · · 1 · · 1 ·	$\begin{array}{c} 4 5 6 7 8 \\ \hline & \cdot & 1 & \cdot \\ \cdot & 1 1 & 1 \\ \cdot & \cdot & \cdot \\ \cdot & 1 1 1 \\ \cdot & \cdot & \cdot \\ \cdot & 1 1 \\ \cdot & 1 \\ \end{array}$	$\phi_{7,3} = \frac{\phi_{7,3}}{1} = \frac{1}{2} $	12 1 1 1 1 1	$3 4 5 6 7 8$ $1 \cdot 1 \cdot$

¢1,3	1 $\phi_{2,3}$	12345	5678	$\phi_{3,3}$	123456	78	<i>ф</i> 4,3	12345678
1	1 1	$\cdot 1 \cdot \cdot$		1	$1 \cdot 1 \cdot 1 \cdot$	• •	1	$\cdots 1 \cdots \cdots$
2	1 2	$11 \cdot \cdot 1$	$1 \cdot \cdot \cdot$	2	$\cdot \cdot 1 \cdot \cdot \cdot$	• •	2	$\cdots 1 \cdots \cdots$
3	1 3	$11 \cdot \cdot 1$	$1 \cdot \cdot \cdot$	3	$1 \cdot 1 \cdot 1 \cdot$	• •	3	$\cdot 1 \cdot 1 \cdot 1 \cdot \cdot$
4	1 4	$\cdot 1 \cdot \cdot$		4	$\cdot \cdot 1 \cdot \cdot \cdot$	• •	4	$\cdots 1 \cdots \cdots$
5	1 5	$11 \cdot \cdot 1$	$1 \cdot \cdot \cdot$	5	$1 \cdot 1 \cdot 1 \cdot$	• •	5	$\cdot 1 \cdot 1 \cdot 1 \cdot \cdot$
6	1 6	$11 \cdot \cdot 1$	$1 \cdot \cdot \cdot$	6	$1 \cdot 1 \cdot 1 \cdot$	• •	6	$\cdot 1 \cdot 1 \cdot 1 \cdot \cdot$
7	1 7	$11 \cdot \cdot 1$	$1 \cdot \cdot \cdot$	7	$1 \cdot 1 \cdot 1 \cdot$	• •	7	11111111 ·
8	· 8			8		• •	8	
		-						
$\phi_{5,3}$	123	45678	$\phi_{6,3}$	123	45678	$\phi_{7,3}$	12	345678
$\phi_{5,3}$	123 1··	45678 ·1···	$\frac{\phi_{6,3}}{1}$	123 ·1·	45678 · · 1 · ·	$\frac{\phi_{7,3}}{1}$	12 1·	$\begin{array}{c} 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ \hline 1 \ \cdot \ 1 \ \cdot \ 1 \ \cdot \end{array}$
$\phi_{5,3} \\ 1 \\ 2$	$\begin{array}{c} 1 2 3 \\ 1 \cdot \cdot \\ 1 \cdot \cdot \end{array}$	45678 · 1 · · · · 1 · · ·	$\phi_{6,3} = \frac{\phi_{6,3}}{1}$	123 ·1· ·1·	$ \begin{array}{r} 4 5 6 7 8 \\ \cdot \cdot 1 \cdot \cdot \\ \cdot \cdot 1 \cdot \cdot \end{array} $	$\phi_{7,3} \ 1 \ 2$	12 1·	$\begin{array}{c} 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 1 \ \cdot \ 1 \ \cdot \ 1 \ \cdot \\ \cdot \ \cdot$
$\phi_{5,3} \\ 1 \\ 2 \\ 3$	$ \begin{array}{c c} 123\\ \hline 1\cdot \\ 1\cdot \\ 1\cdot \\ \end{array} $	45678 · 1 · · · · 1 · · · · 1 · · ·	$\phi_{6,3} = 1 = 2 = 3$	123 ·1· ·1· 111	$ \begin{array}{r} 45678 \\ \cdot \cdot 1 \cdot \cdot \\ \cdot \cdot 1 \cdot \cdot \\ \cdot 111 \cdot \\ \end{array} $	$\phi_{7,3}$ 1 2 3	12 1. 1.	$ \begin{array}{r} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \end{array} $
$\phi_{5,3} = 1$ 2 3 4	$ \begin{array}{c} 123\\ 1\cdot \\ 1\cdot \\ 1\cdot \\ \cdot \\ \cdot \\ \cdot \\ \end{array} $	4 5 6 7 8 · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · ·	$\phi_{6,3}$ 1 2 3 4	123 ·1· ·1· 111	45678 · · 1 · · · 1 1 · · · 1 1 1 ·	$\phi_{7,3} \ 1 \ 2 \ 3 \ 4$	12 1. 1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\phi_{5,3} = 1$ 2 3 4 5	123 1 1 1 1	45678 · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · ·	$\phi_{6,3}$ 1 2 3 4 5	$ \begin{array}{r} 1 & 2 & 3 \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ 1 & 1 & 1 \\ \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \end{array} $	$ \begin{array}{c} 45678 \\ \cdot \cdot 1 \cdot \cdot \\ \cdot 1 \cdot 1 \cdot \\ \cdot 1 1 1 \cdot \\ \cdot \cdot \cdot \\ \cdot 1 1 1 \cdot \\ \cdot \cdot \cdot \\ \cdot 1 1 \cdot \\ \cdot \cdot 1 \cdot \\ \end{array} $	$\phi_{7,3}$ 1 2 3 4 5	12 1. 1. 1.	$ \begin{array}{r} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ 1 \cdot 1 \cdot 1 \cdot \end{array} $
$\phi_{5,3}$ 1 2 3 4 5 6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 45678\\ \cdot 1 \cdot \cdot \\ \cdot 1 \cdot \\ \cdot 1 \cdot \\ \cdot 1 \cdot \\ \cdot 1 \cdot \\ \cdot \\ \cdot 1 \cdot \\ \cdot \\$	$\phi_{6,3} = 1 = 2$ 2 = 3 4 = 5 6 = 1	$ \begin{array}{c} 1 & 2 & 3 \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ 1 & 1 & 1 \\ \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \end{array} $	$ \begin{array}{c} 45678\\ \cdot \cdot 1 \cdot \cdot \\ \cdot 11 \cdot \\ \cdot 111 \cdot \\ \cdot \cdot 1 \cdot \\ \end{array} $	$\phi_{7,3} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6$	12 1 1 1 1	$ \begin{array}{c} 3 4 5 6 7 8 \\ 1 \cdot 1 \cdot 1 \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot 1 \cdot 1 \cdot \\ \end{array} $
$\phi_{5,3}$ 1 2 3 4 5 6 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · · · 1 · · ·	$\phi_{6,3}$ 1 2 3 4 5 6 7	123 · 1 · · 1 · 111 · · · · 1 · · 1 · · 1 ·	$ \begin{array}{c} 45678\\ \cdot \cdot 1 \cdot \cdot \\ \cdot 111 \cdot \\ \cdot 111 \cdot \\ \cdot \cdot 1 \cdot \\ \cdot 111 \cdot \\ \end{array} $	$\phi_{7,3}$ 1 2 3 4 5 6 7	12 1 1 1 1 1	$ \frac{345678}{1\cdot 1\cdot 1\cdot 1} \\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ 1\cdot 1\cdot 1\cdot 1\cdot \\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ 1\cdot 1\cdot 1\cdot 1\cdot \\ $

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\boxed{Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}} \text{ basis: } \phi_{const}(a, b) = 1 \text{ and coboundaries}$ $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \qquad 1 \leqslant q < 2^{n}$

2-cocycle:

$$\phi(a,c) + \phi(a \triangleright b, a \triangleright c) = \phi(b,c) + \phi(a,b \triangleright c)$$

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\begin{bmatrix}
Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}} \\
\phi_{q,n}(a, b) = \begin{cases}
1 & \text{if } q \in Col(b), b \notin Col(a \triangleright b), \\
0 & \text{otherwise.} \end{cases} \quad 1 \leq q < 2^{n}$ 2-cocycle: $\begin{bmatrix}
\phi(a, c) + \phi(a \triangleright b, a \triangleright c) = \phi(b, c) + \phi(a, b \triangleright c)
\end{bmatrix}$

Step 1. 2-cocycle \implies constant on the last column: $\phi(b, 2^n) = \phi(2^n, 2^n)$.

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\begin{bmatrix} Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}} \\ \phi_{q,n}(a,b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \quad 1 \leq q < 2^{n}$ 2-cocycle: $\begin{bmatrix} \phi(a,c) + \phi(a \triangleright b, a \triangleright c) = \phi(b,c) + \phi(a, b \triangleright c) \\ \Rightarrow \text{ constant on the last column: } \phi(b,2^{n}) = \phi(2^{n},2^{n}). \end{cases}$

 $\phi(2^n - 1, 2^n) + \phi((2^n - 1) \triangleright b, (2^n - 1) \triangleright 2^n) = \phi(b, 2^n) + \phi(2^n - 1, b \triangleright 2^n)$

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\begin{bmatrix}
Z_{\rm R}^2(A_n) \simeq \mathbb{Z}^{2^n} \\
\phi_{q,n}(a,b) = \begin{cases}
1 & \text{if } q \in Col(b), b \notin Col(a \triangleright b), \\
0 & \text{otherwise.} \end{cases}$ $1 \leqslant q < 2^n$

2-cocycle:
$$\phi(a, c) + \phi(a \triangleright b, a \triangleright c) = \phi(b, c) + \phi(a, b \triangleright c)$$

Step 1. 2-cocycle \implies constant on the last column: $\phi(b, 2^n) = \phi(2^n, 2^n)$.

$$\phi(2^{n}-1,2^{n}) + \phi((2^{n}-1) \triangleright b, (2^{n}-1) \triangleright 2^{n}) = \phi(b,2^{n}) + \phi(2^{n}-1,b \triangleright 2^{n})$$

$$\phi(2^{n}-1,2^{n}) + \phi(2^{n},2^{n}) = \phi(b,2^{n}) + \phi(2^{n}-1,2^{n})$$

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\boxed{Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}} \text{ basis: } \phi_{const}(a, b) = 1 \text{ and coboundaries}$ $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \qquad 1 \leqslant q < 2^{n}$

2-cocycle:
$$\phi(a, c) + \phi(a \triangleright b, a \triangleright c) = \phi(b, c) + \phi(a, b \triangleright c)$$

Step 1. 2-cocycle \implies constant on the last column: $\phi(b, 2^n) = \phi(2^n, 2^n)$. **Step 2.** 2-cocycle constant on row $2^n - 1 \implies$ constant.

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\boxed{Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}} \text{ basis: } \phi_{const}(a, b) = 1 \text{ and coboundaries}$ $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \quad 1 \leq q < 2^{n}$

2-cocycle: $\phi(a, c) + \phi(a \triangleright b, a \triangleright c) = \phi(b, c) + \phi(a, b \triangleright c)$

Step 1. 2-cocycle \implies constant on the last column: $\phi(b, 2^n) = \phi(2^n, 2^n)$. **Step 2.** 2-cocycle constant on row $2^n - 1 \implies$ constant. **Step 3.** 2-coboundaries $\widetilde{\phi}_{q,n} = -d_{\mathrm{R}}^2(\delta_{q,\bullet}) : (a, b) \mapsto \delta_{b,q} - \delta_{a \triangleright b,q}$, $1 \leqslant q < 2^n$. Put $\widetilde{\phi}_{2^n,n} = \phi_{const} - \sum \widetilde{\phi}_{q,n}$.

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\boxed{Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}} \text{ basis: } \phi_{const}(a, b) = 1 \text{ and coboundaries}$ $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \quad 1 \leqslant q < 2^{n}$

2-cocycle: $\begin{array}{c} \phi(a,c) + \phi(a \triangleright b, a \triangleright c) = \phi(b,c) + \phi(a,b \triangleright c) \\ \end{array}$ **Step 1.** 2-cocycle \Longrightarrow constant on the last column: $\phi(b,2^n) = \phi(2^n,2^n)$. **Step 2.** 2-cocycle constant on row $2^n - 1 \Longrightarrow$ constant. **Step 3.** 2-coboundaries $\widetilde{\phi}_{q,n} = -d_{\mathbb{R}}^2(\delta_{q,\bullet}) : (a,b) \mapsto \delta_{b,q} - \delta_{a \triangleright b,q},$ $1 \leqslant q < 2^n$. Put $\widetilde{\phi}_{2^n,n} = \phi_{const} - \sum \widetilde{\phi}_{q,n}.$ Row $2^n - 1$: $\widetilde{\phi}_{q,n}(2^n - 1, b) = \delta_{b,q}.$

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\boxed{Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}} \text{ basis: } \phi_{const}(a, b) = 1 \text{ and coboundaries}$ $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \quad 1 \leq q < 2^{n}$

2-cocycle: $\begin{aligned} \phi(a, c) + \phi(a \triangleright b, a \triangleright c) &= \phi(b, c) + \phi(a, b \triangleright c) \end{aligned}$ Step 1. 2-cocycle \implies constant on the last column: $\phi(b, 2^n) = \phi(2^n, 2^n)$. Step 2. 2-cocycle constant on row $2^n - 1 \implies$ constant. Step 3. 2-coboundaries $\widetilde{\phi}_{q,n} = -d_{\mathbb{R}}^2(\delta_{q,\bullet}) : (a, b) \mapsto \delta_{b,q} - \delta_{a \triangleright b,q},$ $1 \leqslant q < 2^n$. Put $\widetilde{\phi}_{2^n,n} = \phi_{const} - \sum \widetilde{\phi}_{q,n}.$ Row $2^n - 1$: $\widetilde{\phi}_{q,n}(2^n - 1, b) = \delta_{b,q}.$ $\Rightarrow \{\widetilde{\phi}_{q,n} \mid 1 \leqslant q \leqslant 2^n\}$ is a basis of $Z_{\mathbb{R}}^2(A_n).$

Main theorem: sketch of proof

Theorem (Dehornoy-L., 14) $\boxed{Z_{R}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}} \text{ basis: } \phi_{const}(a, b) = 1 \text{ and coboundaries}$ $\phi_{q,n}(a, b) = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \quad 1 \leq q < 2^{n}$

2-cocycle: $\begin{aligned} \phi(a,c) + \phi(a \triangleright b, a \triangleright c) &= \phi(b,c) + \phi(a, b \triangleright c) \end{aligned}$ Step 1. 2-cocycle \implies constant on the last column: $\phi(b,2^n) = \phi(2^n,2^n)$. Step 2. 2-cocycle constant on row $2^n - 1 \implies$ constant. Step 3. 2-coboundaries $\widetilde{\phi}_{q,n} = -d_{\mathbb{R}}^2(\delta_{q,\bullet}) : (a,b) \mapsto \delta_{b,q} - \delta_{a \triangleright b,q},$ $1 \leq q < 2^n$. Put $\widetilde{\phi}_{2^n,n} = \phi_{const} - \sum \widetilde{\phi}_{q,n}.$ Row $2^n - 1$: $\widetilde{\phi}_{q,n}(2^n - 1, b) = \delta_{b,q}.$ $\implies \{\widetilde{\phi}_{q,n} \mid 1 \leq q \leq 2^n\}$ is a basis of $Z_{\mathbb{R}}^2(A_n).$ Step 4. A change of basis.

Victoria LEBED (OCAMI)

$\widetilde{\phi}_{1,3}$	12345678	$\widetilde{\phi}_{4,3}$	$1\ 2\ 3\ 4\ 5\ 6\ 7\ 8$	$\widetilde{\phi}_{7,3}$	12345678
1	$1 \cdot \cdot \cdot \cdot \cdot$	1	$\cdot -1 \cdot 1 \cdot -1 \cdot \cdot$	1	$\cdots \cdots \cdots 1$ ·
2	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	2	$\cdot -1 \cdot 1 \cdot -1 \cdot \cdot$	2	· · _1· · · · ·
3	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	3	-111 -11.	3	\cdot · · · · · 1 ·
4	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	4	$\cdots 1 \cdots \cdots$	4	· · _1· · · · ·
5	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	5	$\cdot \cdot \cdot 1 \cdot \cdot \cdot$	5	\cdot · · · · · 1 ·
6	$1 \cdot \cdot \cdot \cdot \cdot \cdot$	6	$\cdot \cdot \cdot 1 \cdot \cdot \cdot$	6	-1· -1· -1· · ·
7	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	7	$\cdot \cdot \cdot 1 \cdot \cdot \cdot$	7	\cdot · · · · · 1 ·
8		8		8	

Part 4

Bonus: right division ordering for Laver tables

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a$$
 for some c

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a$$
 for some c

Theorem (Dehornoy-L., 14)

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a$$
 for some c

Theorem (Dehornoy-L., 14)

$$a \mid_r b \quad \Longleftrightarrow \quad Col(a) \supseteq Col(b).$$

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a$$
 for some c

Theorem (Dehornoy-L., 14)

3
$$Col(a) \neq Col(b)$$
 for $a \neq b$.

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a$$
 for some c

Theorem (Dehornoy-L., 14)

1
$$|_r$$
 is a partial ordering for A_n .

$$2 a |_r b \iff Col(a) \supseteq Col(b).$$

3
$$Col(a) \neq Col(b)$$
 for $a \neq b$.

Properties:

& Minimal element: 1, maximal element: 2^n .

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a$$
 for some c

Theorem (Dehornoy-L., 14)

1
$$|_r$$
 is a partial ordering for A_n .

$$2 a |_r b \iff Col(a) \supseteq Col(b).$$

3
$$Col(a) \neq Col(b)$$
 for $a \neq b$.

Properties:

Section Minimal element: 1, maximal element: 2ⁿ.
Section Transformation and the section and the section

Right division for Laver tables

Right division relation:

$$a \mid_r b \iff b = c \triangleright a \text{ for some } c$$

Theorem (Dehornoy-L., 14)

$$2 a |_r b \iff Col(a) \supseteq Col(b).$$

3
$$Col(a) \neq Col(b)$$
 for $a \neq b$.

Properties:

& Minimal element: 1, maximal element: 2^n .

- [⊕] Linear ordering for $n \leq 2$, not linear for $n \geq 3$.
- [⊕] Lattice ordering for $n \leq 4$, not lattice for $n \ge 5$.

Main theorem 2: sketch of proof

Theorem (Dehornoy-L., 14)

Main theorem 2: sketch of proof

Theorem (Dehornoy-L., 14)

 $|_r$ is a partial ordering for A_n .

Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies $(a \circ b) \triangleright c = a \triangleright (b \triangleright c)$

Main theorem 2: sketch of proof

Theorem (Dehornoy-L., 14)

 $|_r$ is a partial ordering for A_n .

Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies $\boxed{(a \circ b) \triangleright c = a \triangleright (b \triangleright c)}$ **Step 2.** Transitivity of $|_r$. $a \mid_r b \mid_r c \implies b = d \triangleright a, c = e \triangleright b$
Main theorem 2: sketch of proof

Theorem (Dehornoy-L., 14)

|_r is a partial ordering for A_n. Step 1. Operation $p \circ q = p \triangleright (q + 1) - 1$ satisfies $(a \circ b) \triangleright c = a \triangleright (b \triangleright c)$ Step 2. Transitivity of |_r. $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$ $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c.$

Main theorem 2: sketch of proof

Theorem (Dehornoy-L., 14) |_r is a partial ordering for A_n . **Step 1.** Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies $\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \triangleright c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \triangleright (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \circ b) \models c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \models c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \models c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \models c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \bullet c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \bullet c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \bullet c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \bullet c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \bullet c = a \bullet (b \bullet c) \\
\hline
(a \bullet b) \bullet c = a \bullet (b \bullet c)$

Theorem (Dehornoy-L., 14)
|r is a partial ordering for
$$A_n$$
.
Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies

$$\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c) \\
\hline
(a \circ b) \triangleright c = a \triangleright (b \triangleright c)
\end{array}$$
Step 2. Transitivity of $|_r$.
 $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$
 $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c.$
Step 3. $\begin{array}{c}
a \mid_r b \iff Col(a) \supseteq Col(b) \\
Col(a) \supseteq Col(b) \ni b \Rightarrow b = c \triangleright a \Rightarrow a \mid_r b.
\end{array}$

Theorem (Dehornoy-L., 14)
|r is a partial ordering for
$$A_n$$
.
Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies

$$\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c)
\end{array}$$
Step 2. Transitivity of |r.
 $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$
 $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c.$
Step 3. $a \mid_r b \iff Col(a) \supseteq Col(b)$
 $Col(a) \supseteq Col(b) \Rightarrow b \Rightarrow b = c \triangleright a \Rightarrow a \mid_r b.$
 $a \mid_r b, c \in Col(b) \Rightarrow a \mid_r b \mid_r c \Rightarrow a \mid_r c \Rightarrow c \in Col(a).$

Theorem (Dehornoy-L., 14)
|_r is a partial ordering for
$$A_n$$
.
Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies

$$\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c)
\end{array}$$
Step 2. Transitivity of |_r.
 $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$
 $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c.$
Step 3. $a \mid_r b \iff Col(a) \supseteq Col(b)$
 $Col(a) \supseteq Col(b) \Rightarrow b \Rightarrow b = c \triangleright a \Rightarrow a \mid_r b.$
 $a \mid_r b, c \in Col(b) \Rightarrow a \mid_r b \mid_r c \Rightarrow a \mid_r c \Rightarrow c \in Col(a).$
Step 4. Resolve the equation $p \triangleright q = q$.

Theorem (Dehornoy-L., 14)
|r is a partial ordering for
$$A_n$$
.
Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies

$$\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c)
\end{array}$$
Step 2. Transitivity of |r.
 $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$
 $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c.$
Step 3. $a \mid_r b \iff Col(a) \supseteq Col(b)$
 $Col(a) \supseteq Col(b) \ni b \Rightarrow b = c \triangleright a \Rightarrow a \mid_r b.$
 $a \mid_r b, c \in Col(b) \Rightarrow a \mid_r b \mid_r c \Rightarrow a \mid_r c \Rightarrow c \in Col(a).$
Step 4. Resolve the equation $p \triangleright q = q$.
Step 5. $Col(q) = Col(q + 2^{n-1}) \sqcup \{q\}, q \leq 2^{n-1}.$

Theorem (Dehornoy-L., 14)
|*r* is a partial ordering for
$$A_n$$
.
Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies

$$\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c)
\end{array}$$
Step 2. Transitivity of |*r*.
 $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$
 $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c.$
Step 3. $a \mid_r b \iff Col(a) \supseteq Col(b)$
 $Col(a) \supseteq Col(b) \ni b \Rightarrow b = c \triangleright a \Rightarrow a \mid_r b.$
 $a \mid_r b, c \in Col(b) \Rightarrow a \mid_r b \mid_r c \Rightarrow a \mid_r c \Rightarrow c \in Col(a).$
Step 4. Resolve the equation $p \triangleright q = q$.
Step 5. $Col(q) = Col(q+2^{n-1}) \sqcup \{q\}, q \leq 2^{n-1}.$
Step 6. $Col(a) \neq Col(b)$ for $a \neq b$.

Theorem (Dehornoy-L., 14)
|r is a partial ordering for
$$A_n$$
.
Step 1. Operation $p \circ q = p \triangleright (q+1) - 1$ satisfies

$$\begin{array}{c}
(a \circ b) \triangleright c = a \triangleright (b \triangleright c)
\end{array}$$
Step 2. Transitivity of |r.
 $a \mid_r b \mid_r c \Rightarrow b = d \triangleright a, c = e \triangleright b$
 $\Rightarrow c = e \triangleright (d \triangleright a) = (e \circ d) \triangleright a \Rightarrow a \mid_r c$.
Step 3. $\overline{a \mid_r b} \iff Col(a) \supseteq Col(b)$
 $Col(a) \supseteq Col(b) \ni b \Rightarrow b = c \triangleright a \Rightarrow a \mid_r b$.
 $a \mid_r b, c \in Col(b) \Rightarrow a \mid_r b \mid_r c \Rightarrow a \mid_r c \Rightarrow c \in Col(a)$.
Step 4. Resolve the equation $p \triangleright q = q$.
Step 5. $Col(q) = Col(q + 2^{n-1}) \sqcup \{q\}, q \leq 2^{n-1}$.
Step 6. $Col(a) \neq Col(b)$ for $a \neq b$.
Step 7. Anti-symmetry of |r.
Victoria LEBED (OCAMI) Lave Tables $22/33$

A good basis for 2-cocycles

Theorem (Dehornoy-L., 14)

$$\boxed{Z_{\mathrm{R}}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}}_{p_{q,n}(a, b)} = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \qquad 1 \leqslant q < 2^{n}$$

We saw: ϕ_{const} and 2-coboundaries $\widetilde{\phi}_{q,n} = -d_{\mathrm{R}}^2(\delta_{q,\bullet}) : (a,b) \mapsto \delta_{b,q} - \delta_{a \triangleright b,q} \in \{0,\pm 1\}, \ 1 \leqslant q < 2^n$, form a basis.

A good basis for 2-cocycles

$$\boxed{Z_{\mathrm{R}}^{2}(A_{n}) \simeq \mathbb{Z}^{2^{n}}}_{p_{q,n}(a, b)} = \begin{cases} 1 & \text{if } q \in Col(b), \ b \notin Col(a \triangleright b), \\ 0 & \text{otherwise.} \end{cases} \qquad 1 \leqslant q < 2^{n}$$

We saw: ϕ_{const} and 2-coboundaries $\widetilde{\phi}_{q,n} = -d_{\mathrm{R}}^2(\delta_{q,\bullet}) : (a,b) \mapsto \delta_{b,q} - \delta_{a \triangleright b,q} \in \{0,\pm 1\}, \ 1 \leqslant q < 2^n$, form a basis.

Change of basis: $\phi_{q,n} = \sum_{s|_r q} \widetilde{\phi}_{s,n}$

-

Digression: Laver tables and branched braids

Theorem (Laver, Drápal, 95)
Operation
$$p \circ q = p \triangleright (q+1) - 1$$
 satisfies
 $(a \circ b) \triangleright c = a \triangleright (b \triangleright c),$ $(a \circ b) \circ c = a \circ (b \circ c),$
 $a \triangleright (b \circ c) = (a \triangleright b) \circ (a \triangleright c),$ $2^n \circ a = a,$
 $a \circ b = (a \triangleright b) \circ a,$ $a \circ 2^n = a.$

A_3, \circ	1	2	3	4	5	6	7	8
1	3	5	7	1	3	5	7	1
2	3	6	7	2	3	6	7	2
3	7	3	7	3	7	3	7	3
4	5	6	7	4	5	6	7	4
5	7	5	7	5	7	5	7	5
6	7	6	7	6	7	6	7	6
7	7	7	7	7	7	7	7	7
8	1	2	3	4	5	6	7	8

Theorem (Laver, Drápal, 95)
Operation
$$p \circ q = p \triangleright (q+1) - 1$$
 satisfies
 $(a \circ b) \triangleright c = a \triangleright (b \triangleright c),$ $(a \circ b) \circ c = a \circ (b \circ c),$
 $a \triangleright (b \circ c) = (a \triangleright b) \circ (a \triangleright c),$ $2^n \circ a = a,$
 $a \circ b = (a \triangleright b) \circ a,$ $a \circ 2^n = a.$

Theorem (Laver, Drápal, 95)
Operation
$$p \circ q = p \triangleright (q+1) - 1$$
 satisfies
 $(a \circ b) \triangleright c = a \triangleright (b \triangleright c),$ $(a \circ b) \circ c = a \circ (b \circ c),$
 $a \triangleright (b \circ c) = (a \triangleright b) \circ (a \triangleright c),$ $2^n \circ a = a,$
 $a \circ b = (a \triangleright b) \circ a,$ $a \circ 2^n = a.$

Theorem (Laver, Drápal, 95)
Operation
$$p \circ q = p \triangleright (q+1) - 1$$
 satisfies
 $(a \circ b) \triangleright c = a \triangleright (b \triangleright c),$ $(a \circ b) \circ c = a \circ (b \circ c),$
 $a \triangleright (b \circ c) = (a \triangleright b) \circ (a \triangleright c),$ $2^n \circ a = a,$
 $a \circ b = (a \triangleright b) \circ a,$ $a \circ 2^n = a.$

Theorem (Laver, Drápal, 95)
Operation
$$p \circ q = p \triangleright (q+1) - 1$$
 satisfies
 $(a \circ b) \triangleright c = a \triangleright (b \triangleright c),$ $(a \circ b) \circ c = a \circ (b \circ c),$
 $a \triangleright (b \circ c) = (a \triangleright b) \circ (a \triangleright c),$ $2^n \circ a = a,$
 $a \circ b = (a \triangleright b) \circ a,$ $a \circ 2^n = a.$

Theorem (Laver, Drápal, 95)
Operation
$$p \circ q = p \triangleright (q+1) - 1$$
 satisfies
 $(a \circ b) \triangleright c = a \triangleright (b \triangleright c),$ $(a \circ b) \circ c = a \circ (b \circ c),$
 $a \triangleright (b \circ c) = (a \triangleright b) \circ (a \triangleright c),$ $2^n \circ a = a,$
 $a \circ b = (a \triangleright b) \circ a,$ $a \circ 2^n = a.$

Division relations for shelves

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
A _n	is a partial ordering ∼→ a good basis for 2-cocycles	
\mathcal{F}_1		induces a total ordering \sim an ordering of braids

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1		induces a total ordering \sim an ordering of braids

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering \sim a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

 $|_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

- $|_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .
- $|_r$ sharpens the depth function

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

 $|_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .

|a| | r is an expension of the dension of the de

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

 $||_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .

Suppose $a \mid_r b$ in \mathcal{F}_1 .

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

 $||_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .

 $\begin{aligned} & \circledast \mid_r \text{ strictly sharpens the depth function:} \quad a \mid_r b \quad \nleftrightarrow \quad d(b) = d(a) + 1. \\ & b = \gamma \triangleright (\gamma \triangleright \gamma), \qquad \qquad d(b) = 3, \\ & a = \left((\gamma \triangleright \gamma) \triangleright ((\gamma \triangleright \gamma) \triangleright \gamma) \right) \triangleright \gamma, \qquad \qquad d(a) = 2. \end{aligned} \\ & \text{Suppose } a \mid_r b \text{ in } \mathcal{F}_1. \text{ Then } \left((1 \triangleright 1) \triangleright ((1 \triangleright 1) \triangleright 1) \right) \triangleright 1 \mid_r 1 \triangleright (1 \triangleright 1) \\ & \text{ in any } A_n. \end{aligned}$

Victoria LEBED (OCAMI)

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering ∼→ a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering	induces a total ordering \sim an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

 $||_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .

 $\begin{aligned} & \circledast \mid_r \text{ strictly sharpens the depth function:} \quad a \mid_r b \quad \nleftrightarrow \quad d(b) = d(a) + 1. \\ & b = \gamma \triangleright (\gamma \triangleright \gamma), \qquad \qquad d(b) = 3, \\ & a = \left((\gamma \triangleright \gamma) \triangleright ((\gamma \triangleright \gamma) \triangleright \gamma) \right) \triangleright \gamma, \qquad \qquad d(a) = 2. \end{aligned} \\ & \text{Suppose } a \mid_r b \text{ in } \mathcal{F}_1. \text{ Then } \left((1 \triangleright 1) \triangleright ((1 \triangleright 1) \triangleright 1) \right) \triangleright 1 \mid_r 1 \triangleright (1 \triangleright 1) \\ & \text{ in any } A_n. \text{ But } 8 \nmid_r 4 \text{ in } A_3! \end{aligned}$

	$a \mid_r b$ if $b = c \triangleright a$	$a \mid_I b$ if $b = a \triangleright c$
An	is a partial ordering \sim a good basis for 2-cocycles	induces a trivial relation
\mathcal{F}_1	induces a partial ordering $\sim \rightarrow$?	induces a total ordering \rightsquigarrow an ordering of braids

Depth function: $d : \mathcal{F}_1 \to \mathbb{N}$, $d(\gamma) = 1$, $d(c \triangleright a) = d(a) + 1$.

$$a \mid_r b \implies d(b) = d(a) + 1$$

 $||_r$ is anti-symmetric, but not transitive on \mathcal{F}_1 .

 $\begin{aligned} & \circledast \mid_r \text{ strictly sharpens the depth function:} \quad a \mid_r b \quad \nleftrightarrow \quad d(b) = d(a) + 1. \\ & b = \gamma \triangleright (\gamma \triangleright \gamma), \qquad \qquad d(b) = 3, \\ & a = \left((\gamma \triangleright \gamma) \triangleright ((\gamma \triangleright \gamma) \triangleright \gamma) \right) \triangleright \gamma, \qquad \qquad d(a) = 2. \end{aligned} \\ & \text{Suppose } a \mid_r b \text{ in } \mathcal{F}_1. \text{ Then } \left((1 \triangleright 1) \triangleright ((1 \triangleright 1) \triangleright 1) \right) \triangleright 1 \mid_r 1 \triangleright (1 \triangleright 1) \\ & \text{ in any } A_n. \text{ But } 8 \nmid_r 4 \text{ in } A_3! \end{aligned}$

To be continued...

Patrick Dehornoy