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1 Coloring invariants for braids

Self-distributivity: (a � b) � c = (a � c) � (b � c)

Diagram colorings by (S,�)

for positive braids: a

b

b

a � b

a

b

c

c

b � c

(a � b) � c
RIII
∼

a

b

c

c

b � c

(a � c) � (b � c)

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c)

β (a)βa



1 Coloring invariants for braids

Diagram colorings by (S,�)

for braids: a

b

b

a � b

a

b

b

a � b

RII
∼

RII
∼

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c) shelf

Aut(Sn)← Bn & RII ∀b, a 7→ a � b invertible rack

S →֒ (Sn)Bn a � a = a quandle

a 7→ (a, . . . , a)



1 Coloring invariants for braids

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c) shelf

Aut(Sn)← Bn & RII ∀b, a 7→ a � b invertible rack

S →֒ (Sn)Bn a � a = a quandle

a 7→ (a, . . . , a)

Examples:

S a � b (S,�) is a in braid theory

Z[t±1]Mod ta + (1− t)b quandle (red.) Burau: Bn → GLn(Z[t
±])

ρB(

· · ·

· · ·

n

i

1

) = Ii−1 ⊕

(
1− t 1

t 0

)
⊕ In−i−1



1 Coloring invariants for braids

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c) shelf

Aut(Sn)← Bn & RII ∀b, a 7→ a � b invertible rack

S →֒ (Sn)Bn a � a = a quandle

a 7→ (a, . . . , a)

Examples:

S a � b (S,�) is a in braid theory

Z[t±1]Mod ta + (1− t)b quandle (red.) Burau: Bn → GLn(Z[t
±])

group b−1ab quandle Artin: Bn →֒ Aut(Fn)

twisted linear quandle Lawrence–Krammer–Bigelow

Z a + 1 rack lg(w), lki,j
free shelf Dehornoy: order on Bn

Laver tables ???



2 Coloring counting invariants for knots

Diagram colorings by (S,�)

for knots: a

b

b

a � b

a

b

b

a � b

RII
∼

RII
∼

a

a � a RI
∼

a

a RI
∼

a

a � a

pos. braids RIII (a � b) � c = (a � c) � (b � c) shelf

braids & RII ∀b, a 7→ a � b invertible rack

knots & links & RI a � a = a quandle



2 Coloring counting invariants for knots

Theorem (Joyce & Matveev ’82):

✓ The number of colorings of a diagram D of a knot K by a quandle (S,�)

yields a knot invariant.

✓ #ColS,�(D) = #HomQuandle(Q(K), S) = Tr(ρS(β))

• Q(K) = fundamental quandle of K

(a weak universal knot invariant);

• closure(β) = K;

• ρS : Bn → Aut(Sn) is the S-coloring invariant for braids.

closure



3 Enhancing invariants: weights

Fenn–Rourke–Sanderson ’95 & Carter–Jelsovsky–Kamada–Langford–Saito ’03:

Shelf S, φ : S× S→ Zn ; φ-weights:

S-colored diagram D 7−→
∑

b

a

±φ(a, b)

The multi-set of weights yields a braid invariant i�

a

b

c c

b

a � b c

b

φ(a, b)+φ(a � b, c)+
✘
✘
✘✘φ(b, c) =

a

b

c

a

c a � c

b � c

✘
✘
✘✘φ(b, c)+φ(a, c)+φ(a � c, b � c)

and a knot invariant if moreover φ(a, a) = 0.



3 Enhancing invariants: weights

These φ-weights strengthen coloring invariants.

Example: S = {0, 1}, a � b = a,

φ(0, 1) = 1 and φ(a, b) = 0 elsewhere.

0

1

1

0

0

1

1 0

6=
0

1

0

1

0

Conjecture (Clark–Saito–. . . ):

Finite quandle cocycle invariants distinguish all knots.

More generally, this approach works for kno�ings Kn−1 →֒ Rn+1.



4 Self-distributive cohomology

Ck
R (S,Zn) = Map(S×k,Zn),

(dkR f)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i−1(f(a1, . . . , âi, . . . , ak+1)

− f(a1� ai, . . . , ai−1� ai, ai+1, . . . , ak+1))

; Rack cohomology Hk
R (S,Zn).

Applications:

1 (Higher) braid and knot invariants:

d2Rφ = 0 =⇒ φ refines (positive) braid coloring invariants,

φ = d1Rψ =⇒ the refinement is trivial.

2 Hopf algebra classification (Andruskiewitsch–Graña ’03).

3 Rack/quandle extensions, deformations etc.



5 Upper strands ma�er

Diagram colorings by (S, σ):
a

b

ba

ab σ(a, b) = (ba, a
b)

Ex.: σ�(a, b) = (b, a � b)

RIII-compatibility ⇐⇒ set-theoretic Yang-Baxter equation:

σ1σ2σ1 = σ2σ1σ2 : S
×3 → S×3 σ1 = σ× IdS, σ2 = IdS×σ

RIII
∼

Set-theoretic solutions
linearize deform

linear solutions.

Example: σ(a, b) = (b, a) R-matrices.



5 Upper strands ma�er

Diagram colorings by (S, σ):
a

b

ba

ab σ(a, b) = (ba, a
b)

Ex.: σ�(a, b) = (b, a � b)

RIII-compatibility ⇐⇒ set-theoretic Yang-Baxter equation:

σ1σ2σ1 = σ2σ1σ2 : S
×3 → S×3 σ1 = σ× IdS, σ2 = IdS×σ

Exotic example: σ(a, b) = (b, a)

σLie(a⊗ b) = b⊗ a+  h1⊗ [a, b], where [1, a] = [a, 1] = 0:

YBE for σLie ⇐⇒ Leibniz relation for [ ]

Very exotic example: σAss(a, b) = (a ∗ b, 1), where 1 ∗ a = a:

YBE for σAss ⇐⇒ associativity for ∗



5 Upper strands ma�er

Diagram colorings by (S, σ):
a

b

ba

ab σ(a, b) = (ba, a
b)

Ex.: σ�(a, b) = (b, a � b)

RIII σ1σ2σ1 = σ2σ1σ2 YB operator

& RII
σ invertible &

birack
∀b, a 7→ ab and a 7→ ab invertible

& RI
∃ a bijection t

biquandle
such that σ(t(a), a) = (t(a), a)

Result: Coloring invariants of braids and knots.

Bad news: These invariants give nothing new!

Unrelated question: Describe free biracks and biquandles.



6 From biracks to racks

Thm (Soloviev & Lu–Yan–Zhu ’00, L.–Vendramin ’17):

✓ Birack (S, σ) ; its structure rack (S,�σ):

a
b

a �σ b

✓ This is a projection Birack ։ Rack along involutive biracks:

• �σ�
=�;

• �σ trivial ⇐⇒ σ2 = Id.

✓ The structure rack remembers a lot about the birack:

• (S,�σ) quandle ⇐⇒ (S, σ) biquandle;

• σ and �σ induce isomorphic Bn-actions on S
n

=⇒ same braid and knot invariants.



6 From biracks to racks

Operation �σ is self-distributive:



7 Guitar map

J : S×n 1:1
−→ S×n,

(xn, . . . , x1) 7−→ (. . . , (x3)x2x1
, (x2)x1

, x1).

xn ··· x1

Jn(x)

J2(x)

...

J1(x)

x4 x3 x2 x1

J4(x)=

(x4)x3x2x1



7 Guitar map

J : S×n 1:1
−→ S×n,

(xn, . . . , x1) 7−→ (. . . , (x3)x2x1
, (x2)x1

, x1).

xn ··· x1

Jn(x)

J2(x)

...

J1(x)

x4 x3 x2 x1

J4(x)=

(x4)x3x2x1

Ex.: σAss(a, b) = (ab, 1) ; J(a, b, c) = (a, ab, abc).

Ex.: σSD(a, b) = (b � a, a) ; J(a, b, c) = (a, b � a, (c � b) � a).

Ex.: σ2 = Id ; Ω from right-cyclic calculus.



7 Guitar map

J : S×n 1:1
−→ S×n,

(xn, . . . , x1) 7−→ (. . . , (x3)x2x1
, (x2)x1

, x1).

Proposition: Jσi = σ
′
iJ . σ:

a

b

ba

ab
σ ′:

a

b

b

a �σ b

Corollary: Same Bn-actions and knot invariants.

B (S, σ) ≇ (S, σ ′) as biracks!



Proposition: Jσi = σ
′
iJ . Proof:

σ2

J

x4 x3 x2 x1

J4(σ2(x))

J3(σ2(x))

J2(σ2(x))

J1(σ2(x)) J

x4 x3 x2 x1

J4(x)

J3(x)

J2(x)

J1(x)

RIII RIII

x4 x3 x2 x1

J4(σ2(x))=J4(x)

J3(σ2(x))=J2(x)�J3(x)

J2(σ2(x))=J3(x)

J2(x)

J1(σ2(x))=J1(x)



8 Braided cohomology

Carter–Elhamdadi–Saito ’04 & L. ’13:

Ck
Br(S,Zn) = Map(S×k,Zn),

(dkBrf)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i−1(f(a1, . . . , ai−1, (ai+1, . . . , ak+1)ai
)

− f((a1, . . . , ai−1)
ai , ai+1, . . . , ak+1))

f

•

=
∑

(−1)i−1
(

σ

σ

an+1
a ′

n+1

a ′
i+1

...

ai+1

ai

...

a1

f

•

−
)

an+1

a ′
1

a ′
i−1

...

ai−1

ai

...

a1

; Braided cohomology Hk
Br(S,Zn).



9 Why I like braided cohomology

1 (Higher) braid and knot invariants:

d2Brφ = 0 =⇒ φ refines (positive) braid coloring invariants,

φ = d1Brψ =⇒ the refinement is trivial.

�estion: New invariants?

Answer: I don’t know!

2 d2Brφ = 0 =⇒ diagonal deformations of σ:

σq(a, b) = q
φ(a,b)σ(a, b).

(Freyd–Ye�er ’89, Eisermann ’05)



9 Why I like braided cohomology

3 Unifies cohomology theories for

✓ self-distributive structures σSD(a, b) = (b � a, a)

✓ associative structures σAss(a, b) = (a ∗ b, 1)

✓ Lie algebras σLie(a⊗ b) = b⊗ a+  h1⊗ [a, b]

........................

+ explains parallels between them,

+ suggests theories for new structures.



9 Why I like braided cohomology

4 For certain σ, computes the group cohomology of

Grp(S, σ) = 〈 S | ab = ba a
b, where σ(a, b) = (ba , a

b) 〉

Example: Grp(S, σSD) = 〈 S | ab = b (a � b) 〉 = As(S,�).

YB world

examples

55
ass. world

methods
uu

Applications: Cohomology of factorized groups & plactic monoids.

Rmk: Grp(S, σ)-modules are coe�icients for braided cohomology (“walls”).

Rmk: Structure racks know a lot about structure groups.



10 Flying saucer cohomology



10 Flying saucer cohomology

Sideways maps:
a

a · b

b

a ·̃ b

Fenn–Rourke–Sanderson ’93, Ceniceros–Elhamdadi–Green–Nelson ’14:

Ck
Bir(S,Zn) = Map(S×k,Zn),

(dkBirf)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i−1(f(a1, . . . , âi, . . . , ak+1)

− f(ai ·̃ a1, . . . , ai ·̃ ai−1, ai · ai+1, . . . , ai · ak+1))

; Birack cohomology Hk
Bir(S,Zn).

Normalized subcomplex Ck
N for biquandles: f(. . . , ai, ai, . . .) = 0.

Application: Braid and knot invariants.



10 Guitar map counter-a�acks

Thm (L.–Vendramin ’17):

✓ Braided and birack cohomologies are the same:

J∗ : (C•
Bir(S,Zn), d

•
Bir)

∼= (C•
Br(S,Zn), d

•
Br).

✓ For biquandles, cohomology decomposes: C•
Bir

∼= C•
N ⊕ C

•
D.

�estion: Does C•
N determine C•

D?

Particular cases:

✓ a rack (X,�) and its dual (X, �̃) have the same cohomology (folklore);

✓ cohomology decomposition for quandles (Litherland–Nelson ’03);

✓ two forms of group cohomology (folklore);

✓ new results for involutive biracks.

Proof: Use a graphical version of d∗Bir & play with diagrams!



x1

x2

x3

x4

x3 ·̃x1

x3 ·̃x2

x3

x3·x4

x1

x3 ·̃x1

x2

x3 ·̃x2 x3

x3

x3

x3

x4

x3·x4


	SD
	SD cohomology
	YBE
	Guitar map
	YBE cohomology
	Birack cohomology

