A geometrical meaning of the Riemann tensor:
parallel transport around a closed loop.!
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In flat space, if you parallel transport a vector around a closed loop it always comes back
to itself. This isn't true in curved space, the purpose of this calculation it to show that the
change in a vector after it is transported around a closed loop is related to the Riemann tensor.
The calculation is done for a small loop begining and ending at a point p and we find that
the leading order change to the vector depends on the Riemann cuvature at p. The calcuation
would be much more difficult for a loop that wasn't small, the change would involve integrating
a complicated function around the loop. By taking the loop to be small we can expand all our
quantities around their value at p.

So, consider a point p with coordinates X“. Let
2'(t) = X+ et (1)

with € < 1 and z%(0) = 2%(T") = 0 be a small loop begining and ending at p. If V* is a vector
at p then the parallel transported vector V() satisfies the parallel transport equation

UV, Vi(t) =0 (2)

with, as usual,
dx®

Ut = dt ()

and V*(0) = V. From now on we will use quantities without an arguement to mean the same
quantity at the start of the loop at p, that is with ¢ = 0.

Writing the parallel transport equation (?7?) out more explicitly

ave(t)

S TLOU V) = 0 (4

where these quantities all depend on ¢ through their spatial dependence. This can be integrated
to give

Vet) — Ve = — / t dtTe(t YU (V) (5)
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Furthermore, we know
dzb(t)
6
dt (©)
This means that the integrand in (?7) is order ¢, and, if we want the leading order expression
for V%(t) we only need the zeroth order expressions for I'¢. (') and V(t') in the integrand. In
other words, by Taylor expansion

Ubt) = ¢

Te () = T%+0(e)
V() = Vo4 O(e).

Putting this into the equation gives

V() = V= —eT eV / ' — eV (1) + O()
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Hence, using 2*(T) =0
VUT) =V + O()

This means that the vector is the same after to parallel transport, to the second order in e.

We now calculate the next order in €. We can do this because we have now worked out
V%(t) to first order. Hence, by Taylor expansion

T3 () = The + 2T, 4+ O(%) (10)
and, by the above

b At
Ve(t') = VO — eV / dt/ = = —e bV (1) + O() (11)
0 dt

Substituting this into the equation for V*(t) (?7) we get

a a N /Ta a d de(f,/) c c e f 3
Vv (t) —Vo=—€ dt [Fbc + t:Fbc,d‘z (t)] dt’ [V = 6Fef‘/ z (t)} + O(E )
0
If we evaluate at t = T the order € part vanishes and we get

dz*(t)
dt’

22t + O(e%) (13)

t 1 b tl
VT~V = & / d {rgg‘z( Y e veat (1) — T 2%(t)
0

— Vel +0()
. o d2b (Y

= E[rere, —Tg,) Ve / = ®)
‘ o

where, for convenience, we have renamed some of the summed indices. Next, we use integration
by parts and the boundary conditions z%(0) = z*(T") = 0 to show

/’L dt/dzb(tl)zd(t/) — _ /’l dt,dZd(t() Zb(t,). (14)
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This allows us to antisymmetrize the indices b and d in the expression for V*(T) — V* (?7?):

51 A2
VAT) Ve = &5 [ORT - T — T+ 1) v [ =) o) )
Jo
Now, we know
R =Ty = Theu + TLT4; — THT0, + O(€) (16)
so, with zero torsion,
1 [t
VAT) =V = &Ry, V° / dt’ 7(11(/ Ly (17)
0 It

Thus, to leading order the change in the vector depends on the Riemann tensor at p and on
an integral factor which does not depend on the derivative of the metric. The integral factor
is related to the size of the loop; it is easy to see that it is the area of the loop if the loop is a
parallelogram.

Don't worry too much about which of the indices of the Riemann tensor is raised, this can
always be moved around using the symmetries of the Riemann tensor:

Rdcbu - gueRdcbc - gueRbcdc - gueRebcd = Rabcd (18)




