442 Sample Paper - Outline answer to the first part of the first question¹

11 March 2004

Define geodesic coordinates and writing the Riemann tensor in terms of these coordinates show $R_{abcd} = R_{cdab}$. [BOOK WORK]

Solution: If you use normal coördinates $\Gamma_{ab}^c = 0$, $g_{ab} = \eta_{ab}$ and the first derivatives of the metric are all zero. Basically, you loose the two terms which are second order in Γ . Substituting this back into the expression for the Riemann tensor it is easy to check that

$$R_{abcd} = \frac{1}{2} \left(-g_{ac,bd} + g_{ad,bc} + g_{bc,ad} - g_{bd,ac} \right) \tag{1}$$

so $R_{abcd} = R_{cdab}$ just follow from the symmetry of the metric and of the second derivative.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/442.html