
General Relativity & Cosmology - Lecture 1

1 References

• d’Inverno, Ray - “Introducing Einstein’s Relativity” - our main reference for GR

• Schutz, Bernard - “A First Course in General Relativity”

2 Prelude: Planck Units

In fundamental physics there are three dimensionfull constants; G, c, ~ (Newton’s gravitational constant,
the speed of light and Planck’s constant, respectively).

G - strength of gravity, obtained from F = Gm1m2

r2

- it is a weak force.

:= 6.673× 10−11m3kg−1s2

[G] = L3M−1T2

c := 2.997× 108ms−1

[c] = LT−1

~ := 1.054× 10−34Js
- sets the scale of quantum mechanical effects.
- is a quantum of work or action (energy x time).
- processes on this scale are quantum mechanical.

[~] = ML2T−2

We define basic units of length, mass and time using these constants.

Planck mass, length and time are defined as

mpl =
2

√

~c

G
lpl =

2

√

~G

c3
τpl =

2

√

~G

c5
(1)

So mpl is a mass in Planck units:

[mpl] =
(
ML2T−1

)1/2 (
LT−1

)1/2 (
L3M−1T−2

)−1/2
= M (2)

We refer to mass in mpl rather than xkg.

l3plm
−1
pl τ−2

pl =

(
~

3/2G3/2

c9/2

)(
G1/2

~1/2c1/2

)(
c5

~G

)

= G

⇒ G = 1 l3plm
−1
pl τ−2

pl

In other words (and by further checking)

G = 1
c = 1
~ = 1






Planck Units

For convenience we will use Planck units.

Before going on, notice the remarkable matching of the fundamental dimensional constants and the
number of dimensions.
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c ←→ special relativity

~ ←→ quantum mechanics

G ←→ general relativity

}

QFT

(fitting QFT & GR together is hard - String Theory).
All of this leaves out “emergent behaviour” e.g. condensed matter physics, biology, chemistry.

3 Motivating Metrics

Consider two points a and b with a path γ between them:

a

bγ

The distance between a and b along γ is given by

s =

∫

γ

ds

But what exactly is “ds”? ⇒ näıvely it is an infinitesimal increment along the path.
So the idea we have is that we approximate the path with a series of small increments and sum them

a

bγ

δs1

δs2

δs3

δs4
δs5 δs6 δs7

s ≃

7∑

i=0

δsi

As we increase the number of increments, this becomes more exact and
∫

γ
ds is the limit

N∑

i=0

δsi
N→∞
−→

∫

ds Functional Analysis describes this process

How would you actually do this integral?

3.1 What exactly is “ds”?

We normally express ds in terms of some coordinates. s =
∫

γ
ds doesn’t depend on having coordinates,

but to work it out we would normally have a description of γ in terms of some coordinates, and we would
rewrite ds in terms of these coordinates.

For example, in the ordinary 2d plane R
2 with Cartesian coordinates
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(x, y)

(x + dx, y + dy)

ds

dx

dy

=⇒ ds2 = dx2 + dy2

(of course we draw small line segments, but refer to the infinitesimal limit).

In practice

ds =

√

1 +

(
dy

dx

)2

dx

The left hand side shouldn’t depend on coordinates, but the right hand side does.
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Lecture 2 ds is an infinitesimal increment along the path. In practical calculations we use coordinates.
For the R

2 example we can use Cartesian coordinates (x, y) and thus

ds2 = dx2 + dy2

Another set of coordinates for R
2 is polar coordinates (r, θ), where

x = r cos θ y = r sin θ

ds2 = dr2 + dl2

= dr2 + r2dθ2

i.e. in these coordinates

ds2 = dr2 + r2dθ2

So the point is that “ds” between two infinitesimally proximate points is the same, but the expression in
terms of the coordinates is different.

Of course, this isn’t always the case. Here we are considering two different coordinates for the same space
(R2), but of course we can think about other spaces.

Example: S2 - 2-sphere

Reminder: the surface of a 3d ball - 2 dimensional.

Defined by x2 + y2 + z2 = 1 (unit sphere).

Using spherical polar coordinates:

Aside: Spherical Polar Coordinates

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

where θ is the azimuthal angle, φ polar.
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Tackling infinitesimal distances:

Working out dl first

Radius is sin θ ⇒ dl = sin θ dφ

Now taking the dθ component.

These are along a circle of longitude, all circles
of longitude have radius one.

So keep θ fixed and vary φ

ds2 = dθ2 + sin2θ dφ2

This is really different from our preceding two:

ds2 = dx2 + dy2 = dr2 + r2dθ2

→ these are not changes of coordinates, will change R
3 metric to the S2 metric.

What is different?

α + β + γ > π

2πr > c
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→ these are signatures of curvature.

What we want to do here is

• realise space-time is curved

• describe this curvature in a convenient way

• find an equation for the curvature of space-time

4 Coordinates & Metrics

Consider a metric space with coordinates (x1, x2, . . . , xd)
→ can be local coordinates
→ in GR, coords are indexed by a subscript.

We write ds2 = gabdxadxb expressing the infinitesimal in terms of the coordinates.

We are using Einstein’s convention, and gab is called the metric tensor1, a 2 indexed object:

[gab]
2 =









g11 g12 · · · g1d

g21
. . .

...
...

. . .
...

gd1 · · · · · · gdd









(3)

We should always take this to be symmetric:

gab = gba

Example 1:

ds2 = dx2 + dy2

= dx12
+ dx22

= gab dxadxb

[gab] =

„
1 0
0 1

«

Example 2:

ds2 = dr2 + r2dθ2 x1 = r, x2 = θ

= gab dxadxb

[gab] =

„
1 0
0 (x1)2

«

Note: It is a common abuse of notation to move between indexed and conventional symbols for
coordinates, e.g.

[gab] =

„
1 0
0 r2

«

1Tensors to be defined
2Square brackets around a tensor mean expressing the tensor as a matrix.
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Lecture 3

ds2 = gab dxadxb (4)

This relates the length ds to infinitesimal increments in the coordinates.

Again we are using the summation convention, matching pairs of up and down indices to be summed
over.

We are interested here in changes of coordinates

[gab] =

(
1 0
0 1

)

for Cartesian

=

(
1 0
0 r2

)

for Polar







for same ds2

Consider a change of coordinates
xa 7−→ yb(xa)

where yb is some new set of coordinates expressible in terms of the old ones.

Example: (r, θ) 7−→ (x, y)

x(r, θ) = r cos θ

y(r, θ) = r sin θ

There is a notation convention used here that is initially confusing but ultimately useful: we use the
letters with unprimed & primed indices to mean different things, i.e. rather than write x′a as a different
coordinate to xa, we write xa′

(d’Inverno doesn’t though).

So xa is one set of coordinates, xa′

is another.

Above Example implies

x1 = r x1′ = x

x2 = θ x2′ = y

Coordinate change is
xa 7−→ xa′

(xa)

Consider a change of coordinates
xa 7−→ xa′

ds2 = gab dxadxb = ga′b′ dxa′

dxb′ (5)

ds2 is the same! However [ga′b′ ] is not necessarily the same as [gab].

We can express dxa′

in terms of dxa using the Chain Rule

dxa′

=
∂xa′

∂xa
dxa (6)
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Note: that summation converts an upper index which is below the line in a derivative, counts as
a down index, i.e.

dxa′

=
nX

a=1

∂xa′

∂xa
dxa

We aren’t using it here, but a down index below a line counts as an upper index.

ds2 = gab dxadxb

= ga′b′ dxa′

dxb′

= ga′b′

(

∂xa′

∂xa
dxa

)(

∂xb′

∂xb
dxb

)

=
∂xa′

∂xa

∂xb′

∂xb
ga′b′ dxadxb

=⇒ gab =
∂xa′

∂xa

∂xb′

∂xb
ga′b′ (7)

As ∂xa

∂xb = δa
b , by the Chain rule:

∂xa

∂xa′

∂xa′

∂xb
= δa

b (8)

∂xa

∂xa′

∂xb′

∂xa
= δb′

a′ (9)

giving

gab =
∂xa′

∂xa

∂xb′

∂xb
ga′b′

(10)

∂xa

∂xc′

∂xb

∂xd′
gab =

(

∂xa′

∂xa

∂xa

∂xc′

)

︸ ︷︷ ︸

δa′

c′

(

∂xb′

∂xb

∂xb

∂xd′

)

︸ ︷︷ ︸

δb′

d′

ga′b′

= gc′d′ (11)

What we have done is calculate how gab changes under a coordinate transformation (but remember ds

doesn’t change).

xa 7−→ xa′

dxa 7−→ dxa′

= Aa′

a dxa where Aa′

a = ∂xa′

∂xa

gab 7−→ ga′b′ = Aa
a′ Ab

b′ gab

(12)
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Example 1: R
2 Here we change coordinates from x1 = x, x2 = y to x1′ = r, x2′ = θ.

x = r cos θ y = r sin θ

dx

dr
= cos θ

dx

dθ
= −r sin θ

dy

dr
= sin θ

dy

dθ
= r cos θ

g1′1′ =
∂xa

∂x1′

∂xb

∂x1′
gab

=

„
∂x1

∂x1′

«2

+

„
∂x2

∂x1′

«2

= cos2 θ + sin2 θ

= 1

g1′2′ =
∂xa

∂x1′

∂xb

∂x2′
gab

=
∂x1

∂x1′

∂x1

∂x2′
+

∂x2

∂x1′

∂x2

∂x2′

=
∂x

∂r

∂x

∂θ
+

∂y

∂r

∂y

∂θ

= −r sin θ cos θ + r sin θ cos θ

= 0

Similarily

g2′1′ = 0

g2′2′ =
∂xa

∂x2′

∂xb

∂x2′
gab

=

„
∂x1

∂x2′

«2

+

„
∂x2

∂x2′

«2

= r2 sin2 θ + r2 cos2 θ

= r2

=⇒ [ga′b′ ] =

„
1 0
0 r2

«

as before.
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Example 2:

x1′ = xc + ys

x2′ = −xs + yc
(13)

where
s2 + c2 = 1

i.e.
c = cos θ s = sin θ

If I work this out, I get:
g1′1′ = 1 g1′2′ = 0 g2′1′ = 0 g2′2′ = 1

=⇒ the metric tensor remains the same - as this case is a rotation.

A transformation that leaves the metric tensor the same is called an isometry

[ga′b′ ] [gab]
∥
∥
∥

∥
∥
∥

(
1 0
0 1

) (
1 0
0 1

)

i.e. some coordinate changes may leave the exact form of gab the same
−→ these are isometries
but we are interested in all coordinate changes - general transformations.
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Lecture 4 Recall
xa 7−→ xa′

dxa 7−→ dxa′

= Aa
a′ dxa

gab 7−→ ga′b′ = Aa′

a Ab′

b gab

where

Aa
a′ =

∂xa′

∂xa

and

Aa′

a =
∂xa

∂xa′

5 Isometries

For a given metric there may exist specific coordinate changes that leave the exact form of the metric
fixed - these are isometries, i.e.

xa 7−→ xa′

such that
[gab] = [ga′b′ ]

Example:

x 7−→ x′ = cx + sy

y 7−→ y′ = −sx + cy
(14)

where
c = cos θ, s = sin θ

x1 = x, x2 = y, x1′ = x′, x2′ = y′ (defining an indexed notation).

∂x1′

∂x1
= A1′

1 = c;
∂x2′

∂x1
= A2′

1 = −s (15)

etc. to find

g1′1′ = c2 + s2 = 1 (16)

g2′2′ = 1 (17)

g1′2′ = g2′1′ = 0 (18)

⇒ this is an isometry on R
2 (flat).

Example:

x 7−→ x′ = x + a

y 7−→ y′ = y + b
(19)

a, b constant - this is also an isometry.

So isometries of R are translations and rotations (together they form a group called the Euclidean group
- see Course 445).

Thus isometries are a special metric specific group of coordinate transformations. For now though, we
want to think about General Covariance: the consequence of a general (smooth) coordinate change.

The idea is that fundamental equations should be expressible in a way that makes sense in all coordinate
systems.

For example, in 3d flat space ~F = m~a is Newton’s law in Cartesian coords, but T = Iẇ is the corre-
sponding law for rotational motion. However these two equations are expressing the same principle, they
are just written in different coordinate systems. It should be possible to express them as special cases of
a single equation.

We need to make the index structure explicit, i.e. we need to work with Tensors, indexed objects with
known coordinate transform properties.
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5.1 Definition of Tensors
xa 7−→ xa′

dxa 7−→ dxa′

= Aa′

a dxa

gab 7−→ ga′b′ = Aa
a′ Ab

b′ gab

More generally, define a scalar φ as a function of xa such that

φ(xa) 7−→ φ(xa′

)

The value of φ at a given point remains the same although the coordinate description of that point
changes.

Contravariant Vector is a single indexed function of coordinates with the transformation law

xa 7−→ xa′

va 7−→ va′

= Aa′

a va

(Contravariant vector is a name given to a vector function over space(time) with a particular transfor-
mation property.)

We have already had an example of a contravariant vector: dxa.

Covariant Vector is a single indexed function of coordinates with the transformation law

xa 7−→ xa′

ua 7−→ ua′ = Aa
a′ ua

The gradient of a scalar is a covariant vector:

∂aφ =
∂φ

∂xa

This is the normal gradient in R
n

xa 7−→ xa′

∂aφ 7−→ ∂a′φ

=
∂

∂xa′
φ

=
∂xa

∂xa′

∂

∂xa
φ

= Aa
a′ ∂aφ

Definition: A type (r, s) tensor is an object with r contravariant and s covariant indices, that is, it is
an r + s indexed function of coordinates with the transformation property

xa 7−→ xa′

T a1a2...ar

b1b2...bs
7−→ T

a′

1a′

2...a′

r

b′1b′2...b′s

= A
a′

1
a1A

a′

2
a2 . . . A

a′

r
arA

b1
b′1

Ab2
b′2

. . . Abs

b′s

(
T a1a2...ar

b1b2...bs

)

The contravariant vector is a (1,0) tensor.
The covariant vector is a (0,1) tensor.
The metric tensor is an example of a (0,2) tensor.
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Lecture 5

FAQ Is δab a tensor? No!

Sometimes, particularly in applied maths, we use tensors but don’t consider general transformations,
i.e. strict tensors are only isometries on flat R

2.
For flat R

3

gab = δab [gab] =

0

@

1 0 0
0 1 0
0 0 1

1

A

δab =


1 a = b

0 a 6= b

When δab is used often, it is really supposed to be gab, but in the context gab = δab - restricted

context.

We defined a tensor yesterday:
An (r, s) tensor has r-up indices and s-down indices and

T a1a2...ar

b1b2...bs
7−→ T

a′

1a′

2...a′

r

b′1b′2...b′s

= A
a′

1
a1A

a′

2
a2 . . . A

a′

r
arA

b′1
b1

A
b′2
b2

. . . A
b′s
bs

(
T a1a2...ar

b1b2...bs

)

5.2 Properties of Tensors

1. Linear For S an (r, s) tensor, T an (r, s) tensor, α & β real, then

α Sa1a2...ar

b1b2...bs
+ β T a1a2...ar

b1b2...bs

is an (r, s) tensor.

Proof:

α Sa1a2...ar

b1b2...bs
+ β T a1a2...ar

b1b2...bs

7−→ α S
a′

1a′

2...a′

r

b′1b′2...b′s
+ β T

a′

1a′

2...a′

r

b′1b′2...b′s

= α A
a′

1
a1A

a′

2
a2 . . . A

a′

r
arA

b1
b′1

Ab2
b′2

. . . Abs

b′s
Sa1a2...ar

b1b2...bs

+β A
a′

1
a1A

a′

2
a2 . . . A

a′

r
arA

b1
b′1

Ab2
b′2

. . . Abs

b′s
T a1a2...ar

b1b2...bs

=
(

A
a′

1
a1A

a′

2
a2 . . . A

a′

r
arA

b1
b′1

Ab2
b′2

. . . Abs

b′s

) (
α Sa1a2...ar

b1b2...bs
+ β T a1a2...ar

b1b2...bs

)

2. Multiplication for S an (r1, s1) tensor, T an (r2, s2) tensor, then

S
a1a2...ar1

b1b2...bs1
T

c1c2...cr2

d1d2...ds2

is a (r1 + r2, s1 + s2) tensor. Prove by checking the transformation property.

Note: Not all (r1 + r2, s1 + s2) tensors are of this form. For example is Ua and Vb are covariant
vectors, i.e. (0,1) tensors, then

Tab = Ua Vb

is a (0,2) tensor, but in d-dimensions (a = 1, . . . , d) a general (0,2) tensor has d2 components:

[Tab] =

0

B
B
B
B
B
@

T11 T12 · · · T1d

T21

. . .
..
.

.

..
. . .

.

..
Td1 · · · · · · Tdd

1

C
C
C
C
C
A

Tab = Ua Vb has at most 2d independent components.

For d > 2, it is clear that a general (0,2) tensor has more degrees of freedom than a (0,2) tensor

formed by multiplying two (0,1) tensors [d=2 case is slightly more subtle]
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3. Contraction given a type (r, s) tensor, you can form a type (r − 1, s− 1) tensor by summing one
up index with a down index.

Writing this down for a general tensor is notationally messy, so let’s just examine examples.

T ab
c is a (2,1) tensor, consider

T ab
b =

d∑

b=1

T ab
b

Show this is a (0,1) tensor:

T ab
b 7−→ T a′b′

b′ = Aa′

a Ab′

b Ac
b′T

ab
c

and using the tensor property of T ab
c

= Aa′

a δc
b T ab

c

= Aa′

a T ab
b

that is

V a = T ab
b

We’ve also just shown that
V a 7−→ V a′

= Aa′

a V a

so we see T ab
b is a (0,1) tensor.

Combining properties 2 & 3 together above, we can contract tensors together.

Ua, Vb are (1,0) and (0,1) tensors respectively

UaVb (1, 1) tensor

UaVa (0, 0) tensor – a scalar

gabv
b for example is a (1,0) tensor.

4. Raising & Lowering If T is an (r, s) tensor, there are lots (WRT r) of (r − 1, s + 1) tensors by
contracting with the metric. For example

Ua (1, 0) tensor

gabV
b (0, 1) tensor

More generally, if T a1a2...ar

b1b2...bs
is an (r, s) tensor, then

gcai
T a1a2...ai...ar

b1b2...bs

is an (r − 1, s + 1) tensor.

Notation is lowering: if V a is a (1,0) tensor:

Va = gab V b

T
a1a2...ai−1 ai+1...ar

c b1b2...bs
= gcai

T a1a2...ai...ar

b1b2...bs
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Lecture 6

4. Raising & Lowering cntd.
Define

T
a1a2...ai−1 ai+1...ar

c b1b2...bs
= gcai

T a1a2...ai...ar

b1b2...bs

that is, we lower the ai index by contracting with the metric.

Example:

T a
b = gbcT ac

Ua = gabU
b

Observe the following:

gabU
aUb = UaUa = UbU

b = scalar
ds2 = dxadxa = gab dxadxb

Define raising so that raising a lowered index is the same as “not having lowered it in the first
place.” This is done by defining gab, the inverse metric, by

gabgbc = δa
c

that is [gab] = [gab]
−1

Example: for polar coordinated in 2D

[gab] =

„
1 0
0 1

r2

«

when [gab] =

„
1 0
0 r2

«

gab is a tensor (easy to prove).

So if Ua is a (0,1) tensor, then
Ua = gab Ub

is a (0,1) tensor.

More generally, given a (r, s) tensor T , we can form a (r + 1, s− 1) tensor by contracting with gab:

T a1a2...ar c
b1b2...bi−1 bi+1...bs

= gcbi T a1a2...ar

b1b2...bi...bs

If Ua = gab U b (†) then
Ua = gabUb = gab (gbcU

c)
︸ ︷︷ ︸

by (†)

= δa
c U c = Ua

Good! Lowering and then raising restores the original. The notation is consistent!

5. Symmetries A tensor is symmetric in two indices of the same type if they can be exchanged
without changing the value, that is

T
a1...ap...aq...ar

b1...bs
= T

a1...aq...ap...ar

b1...bs

then T is symmetric in ap and aq.

Example:

gab symmetric in a and b means gab = gba∀a, b

Say d = 3

[gab] =

0

@

g11 g12 g13

g21 g22 g23

g31 g32 g33

1

A

Then saying gab is symmetric is to say

g12 = g21 g23 = g32 g13 = g31
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Metric tensors are always symmetric!

Note

ga′b′ = Aa
a′A

b
b′gab

Now
gb′a′ = Aa

b′A
b
a′gab = Aa

b′A
b
a′gba

by symmetry of gab

a and b are both dummy indices summed over, so it doesn’t matter what we call them. So let’s do
a change of index, renaming a to b and vica-versa:

gb′a′ = Ab
b′A

a
a′ga′b′

The coordinate change transformed tensor of a symmetric tensor is also symmetric!

Anti/skew symmetry is the property whereby a tensor changes sign under the exchange of two
indices, for example wab is skew-symmetric if wba = −wab∀a, b, so for d = 3:

[wab] =





0 w12 w13

−w12 0 w23

−w13 −w23 0





It is easy to prove, as in the example, that symmetry and anti-symmetry are tensor properties in
the sense that they are preserved by tensor transformations.

6. Derivatives

∂aφ =
∂φ

∂xa
is a (0,1) tensor

Consider the (1,0) tensor V a and take its derivative

∂aV b =
∂V b

∂xa

looks like it might be a (1,1) tensor. But it’s not! Look what happens under a coordinate transform:

xa 7−→ xa′

∂aV b 7−→ ∂a′V b′ = ∂
∂xa′ (V b′)

= ∂
∂xa′ (Ab′

bV
b)

= ∂xa

∂xa′

∂
∂xa (Ab′

bV
b)

= Aa
a′

∂
∂xa (Ab′

bV
b)

= Aa
a′

[
∂

∂xa (Ab′

b)V
b + Ab′

b
∂

∂xa (V b)
]

= Aa
a′Ab

b′
∂

∂xa′ (V b′) + Aa
a′

∂2xb′

∂xa∂xb V b

︸ ︷︷ ︸

what’s this for?

This means that ∂aV b doesn’t obey the vector transformation law.

Say you had discovered the law p = ∇ 2
2 φ =

(
∂2

∂x2 + ∂2

∂y2

)

φ in Cartesian coordinates. Expressing in

tensor form:
p = ∂agab∂bφ

Certainly, for gab =

(
1 0
0 1

)

, x1 = x, x2 = y this looks right, as it reduces to

p
︸︷︷︸

scalar

= ∂a gab ∂bφ
︸︷︷︸

(0,1) tensor

︸ ︷︷ ︸

(1,0) tensor

If ∂agab∂bφ was a (1,1) tensor, then ∂agab∂bφ would be a scalar, but it simply isn’t! Although

p = ∂agab∂bφ reduces to p =
(

∂2

∂x2 + ∂2

∂y2

)

φ in Cartesian coordinates, it isn’t true for all coordinate

systems.
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Note: Consider Polar coordinates in 2D
Let’s work out what ∂agab∂bφ is in polar coordinates. Recall that x1 = r, x2 = θ and the metric is

[gab] =

„
1 0
0 r2

«

, [gab] =

„
1 0
0 r−2

«

∂a∂a = ∂1g11∂1φ + ∂1g12∂2φ + ∂2g21∂1φ + ∂2g22∂2φ

= ∂r∂rφ + ∂θr−2∂θφ

=
∂

∂r

„
∂φ

∂r

«

+
1

r2

∂2φ

∂θ2

but in fact, in polar coordinates, we already know for sure that the Laplacian in (r, θ) is

∇2φ =
1

r

∂

∂r

„

r
∂φ

∂r

«

+
1

r2

∂2φ

∂θ2

6=
∂

∂r

„
∂φ

∂r

«

+
1

r2

∂2φ

∂θ2

which we derived above.

Thus ∂aV b is not the correct differential operator for tensors, since it itself is not a tensor, that is

∆ = ∇2 6= ∂a∂a = ∂agab∂a

in general coordinates. We need a new differential operator for tensors!
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Lecture 7 We have seen that the derivative of a scalar, ∂aφ is a tensor

xa 7−→ xa′

∂aφ 7−→ ∂a′φ = Aa
a′∂aφ

(0,1) tensor in fact - covariant.

Also we saw the last day that the derivative of a contravariant vector (a (0,1) tensor) is not a tensor.

∂avb 6= tensor

Example You have seen before that the laplace operator in the 2d polar coordinates is

∆φ =
1

r

d

dr

„

r
∂φ

∂r

«

+
1

r2

∂2φ

∂θ2

→ not ∂agab∂bφ

a näıve expectation might be that ∆ is ∂agab∂b in general coordinates, but it’s not!

∂agab∂bφ
| {z }

(1,0) tensor

= nonsense

6 Covariant Derivative

We want a derivative operator acting on (1,0) tensors which gives a (1,1) tensor. This operator should
→ include differentiation
→ be linear
→ obey the Leibnitz rule (see later)
→ reduce to “just differentiating” for flat space with Cartesian coordinates.

Assume such a thing exists, i.e.

∇aV b is a (1,1) tensor ∇a a linear operator

The obvious form for this
∇bV

a = ∂bV
a + Γa

bc V c (20)

where Γa
bc is some 3 index object whose properties are to be defined in what follows.

Γa
bc is called the connection.

∇b is the covariant derivative. The symbol Db is also used in texts, however we’ll stick with d’Inverno’s
choice of ∇.

∇bV
a 7−→ ∇b′V

a′

= ∇b′V
a′

= ∂b′V
a′

+ Γa′

b′c′ V c′ (21)

Since we require ∇bV
a to be a tensor

∇b′V
a′

= Ab
b′ Aa′

a ∇bV
a (22)

= Ab
b′ ∂b

(

Aa′

a V a
)

+ Γa′

b′c′ Ac′

c V c (23)

= Ab
b′ Aa′

a ∂bV
a + Ab

b′

(

∂b Aa′

a

)

V a + Ac′

c Γa′

b′c′ V c (24)

Put definition of ∇b into this

Ab
b′ Aa′

a ∂bV
a + Ab

b′ Aa′

a Γa
bc V c = Ab

b′ Aa′

a ∂bV
a + Ab

b′

(

∂bA
a′

a

)

V a + Ac′

c Γa′

b′c′V
c (25)

canceling the first terms on each side

Ab
b′ Aa′

a Γa
bc V c = Ab

b′

(

∂bA
a′

a

)

V a + Ac′

c Γa′

b′c′V
c (26)
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Choosing the first term on the RHS and change the summed a to summed c, and since this holds for all
V c, we can remove V c

Ac′

c Γa′

b′c′ = Ab
b′ Aa′

a Γa
bc −Ab

b′

(

∂bA
a′

c

)

(27)

Multiply by Ac
d′ and rename d′ to c′

Γa′

b′c′ = Ab
b′ Ac

c′ Aa′

a Γa
bc −Ab

b′ Ac
c′ ∂b Aa′

c (28)

i.e. the connection is not a tensor!

The connection is an extra structure in a space that enables the space to permit a covariant derivative -
it is defined here by its transformation property - [just like a metric is a structure which allows you to
define distance]. In fact, for a so-called “torsion-free metric connection,” the connection is defined by the
metric. This torsion-free metric connection is a very natural connection in a metric space.

Definition: The torsion is the antisymmetric part of the connection

T a
bc =

1

2
(Γa

bc − Γa
cb) is a tensor! (29)

Notation:

M[ab] =
1

2
(Mab − Mba)

Square brackets around the indices imply the anti-symmetrization of a and b.
More generally:

M[ab...c] =
1

p!

"
X

“

a b ···c
a1b1···c1

”

even
permutations

Ma1b1...c1 −
X

“

a b ···c
a1b1···c1

”

odd
permutations

#

19



Lecture 8

Notation: Anti-symmetrization
Say Tab...c is a tensor. The total anti/skew symmetrization is

T[ab . . . c]
| {z }

p

=
1

p!

"
X

“

a b ···c
a1b1···c1

”

| {z }
sum over

even permutations

Ta1b1...c1 −
X

“

a b ···c
a1b1···c1

”

| {z }

odd permutations

Ta1b1...c1

#

There is a theorem in algebra which points out that the decomposition of a permutation into trans-
positions (swap two elements) is not unique, but for a given permutation, it is either always odd or
always even.

“1234

3142

”

7−→
“1234

3124

”

7−→
“1234

1324

”

7−→
“1234

1234

”

3 transpositions ⇒ odd.

Example p = 3

T[abc] =
1

6
(Tabc + Tbca + Tcab − Tbac − Tacb − Tcba)

We can check T[ab...c] is a tensor if Tab...c is. Furthermore Mab...c = T[ab...c] is anti/skew symmetric

in any two indices (since even permutations of ab . . . c is an odd permutation of ba . . . c.

Notation: Symmetrization
Defined similarly as above - T(ab...c) is the total symmetrization of Tab...c

T(ab...c) =
1

p!

X

all
permutations

Tab...c

e.g. p=3

T(123) =
1

3!
(T123 + T231 + T312 + T213 + T132 + T321)

The symmetrization of a tensor is a tensor, and is symmetric under all pairwise exchanges.

Notation: Partial (Anti) Symmetrization

T[a...b|c...d|e...f ]

means to antisymmetrize over the indices leaving out c . . . d:

T[a|bc|d] =
1

2
(Tabcd − Tdbca)

Similarly for symmetrization:

T(ab|c|d) =
1

6
(Tabcd + Tbdca + Tdacb + Tadcb + Tdbca + Tbacd)

Returning to the main topic

∇aV bis a (1,1) tensor
∇ais a covariant derivative

∇aV b = ∂aV b + Γb
ac

︸︷︷︸

connection
coefficients

V c
(30)

with
Γa′

b′c′ = Ac
c′ Ab

b′ Aa′

a Γa
bc −Ab

b′ Ac
c′

(

∂b Aa′

c

)
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Definition: Torsion

T c
ab = Γc

[ab]

We can show that this is a tensor and if a tensor is zero in one set of coordinates, it is a zero for all
coordinates.

Hence we can consistently set torsion to zero

T c
ab = 0

is a tensor equation accepted as a physical law by Einstein. (i.e. assumed true for simplicity - string
theory says this is non-zero!)

→ We need to generalize the covariant derivative so that is acts on more general tensors.

To do this we assume covariant derivative has the Leibnitz property, that is we require

∇a

(
UaV b

)
= (∇aUb) V b + Ub

(
∇aV b

)
(31)

UbV
b is a scalar implies

∇aUbV
b = ∂bUbV

b (32)

(∂aUb)V b + Ub∂aV b = (∇aUb)V b + Ub∂aV b + UbΓ
b
acV

c (33)

Therefore

∇aUb = ∂aUb − Γc
abUc (34)

This is (0,2) tensor, and everything else in (31) is a tensor, then ∇aUb is. You may check this explicitly.

By considering T a...b
c...dVa . . .WbU

c . . . Zd and by apply a Leibnitz style rule recursively, we can show

∇aT b1...br

c1...cs
= ∂aT b1...br

c1...cs
+
∑

i

Γbi

ap T b1...p...br

c1...cs
︸ ︷︷ ︸

p in ith position

−
∑

i

Γp
aci

T b1...br

c1...p...cs
︸ ︷︷ ︸

p in ith position

(35)
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Lecture 9

∇aT b1...br

c1...cs
= ∂aT b1...br

c1...cs
+
∑

i

Γbi

ap T b1...p...br

c1...cs
︸ ︷︷ ︸

p in ith position

−
∑

i

Γp
aci

T b1...br

c1...p...cs
︸ ︷︷ ︸

p in ith position

(36)

For GR, we assume torsion free
Γc

[ab] = 0 ⇒ Γc
ab = Γc

ba

7 The Metric Connection

A metric connection is a connection which is compatible with the metric.

∇bgbc = 0

is a restrictive property on the connection. In fact, we’ll see that it defines the connection in terms of the
metric and its derivatives.

This is important because without this property, out attempts to covariantize physics (i.e. rewrite in
tensor form) would be plagued by order ambiguities.

Example: Laplacian in 2d

∆ =

„
∂2

∂x2
+

∂2

∂y2

«

To write this in terms of tensors

∆φ = ∇a∂aφ ∂aφ
|{z}

scalar

= ∇aφ

= ∇a∇
aφ

Now we wonder do I mean
∆φ = gab∇a∇bφ

or
∆φ = ∇a∇bg

abφ

or
∆φ = ∇agab∇bφ

∇a

“

gab∇bφ
”

=
“

∇agbc
”

∇bφ + gab∇a∇bφ

However ∇agbc = 0. Thus Metric Connection ⇐ ∇agbc = 0

∇a gbcg
cd

| {z }

gd
b

= (∇agbc) gcd + gbc∇agcd

⇒ ∇a

“

gab∇bφ
”

= gab∇a∇bφ

Order ambiguity – you might have encountered this for covariantizing - doesn’t occur for metric
connections

∇agbc ⇔ ∇agbc = 0

Again Einstein assumed a metric connection for this reason.

If we had a metric connection

∇c gab = 0

∇a gbc = 0

∇b gca = 0
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0 = ∇c gab = ∂c gab − Γe
ca geb − Γe

cb gae (37)

0 = ∇a gbc = ∂a gbc − Γe
ab gec − Γe

ac gbe (38)

0 = ∇b gca = ∂b gca − Γe
bc gea − Γe

ba gce (39)

Do (38) + (39) - (37)

∂a gbc + ∂b gca − ∂c gab

= Γe
ab gec + Γe

ac gbe + Γe
bc gea − Γe

ba gce − Γe
ca geb − Γe

cb gae

= 2Γe
ab gec

=⇒ Γf
ab =

1

2
gcf (∂a gbc + ∂b gca − ∂c gab) (40)

This is an expression for the metric connection for a given metric, which is torsion-free as it is symmetric
in a and b.

Sometimes the connection coefficient for a torsion-free metric connection is called a Christoffel symbol

of the first kind

Γf
ab =

{
f

ab

}

notation used in some books

And

gaf Γf
bc = [bc, a] notation used in some books

is called the Christoffel symbol of the second kind.

Summary A given metric has a particularly natural connection associated with it and this is the
torsion-free metric connection

Γf
ab =

1

2
gcf (∂a gbc + ∂b gca − ∂c gab)

Note

For Cartesian coordinates on flat space, Γa
bc

= 0 for any a, b, c because

gab =


1 a = b

0 otherwise
and Γa

ab
involves derivatives.
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Lecture 10

Definition: The torsion-free metric derivative is defined as

Γc
[ab] = 0 ↔ torsion-free

∇a gbc = 0 ↔ metric is a covariant constant

Γf
ab =

1

2
gcf (∂a gbc + ∂b gca − ∂c gab)

8 Parallel Transport

This is covariantization of the notion of constant along a curve.

Aside “Locally at least”
This means that while there may not be a coordinate system that works over the whole space (for
example a sphere has coordinate singularities). We can always find a good coordinate system in a
neighbourhood of a given point.
For example at θ = 0, φ makes no sense on a 2-sphere, but we are ignoring global issues here.

The subject of differential geometry is about stitching together facts based on local coordinates into

global statements. In GR, it is usually enough to work locally.

Locally at least, there are coordinates xa and we can parametrize the curve in terms of these coordinates;
c = xa(t), where t is some parameter often referred to as an affine parameter.

Choose

p = ~x(t = 0)

= (x1(0), x2(0), . . . , xd(0))

where d is the dimension of the space. A tangent to the curve is 3

Ua =
dxa

dt

A vector V a(t) defined along the curve is said to be parallel transported if it satisfies

Ua∇a V b = 0

Conversely, we use the definition actively: if we are given a vector V a at p, the vector V a(t) is the parallel
transport of V a if V a(0) = V a and Ua∇a V b = 0

So parallel transport defines a vector V a everywhere along the curve. Of course, V a can be regarded as
a function of coordinates V a(xb)|xb on the curve or as a function of t: V a(xb(t))

3the following is actually the definition of derivatives
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V a evaluated on
the curve by
solving differential
equations.

It is similar to requiring V a to be constant on the curve, that is

d

dt
V b = 0

Using the Chain rule:

∂xa

∂t

∂

∂xa
V b = 0 Ua ∂a V b = 0

Ua ∂a V b = 0 is NOT covariant, but Ua∇a V b = 0 is!

9 Geodesic Equation

This is used to generalize the notion of a straight line.

Given parallel transport, note that a natural vector on a curve is the tangent vector. Generically, of
course, the tangent vector isn’t parallel transported.

A geodesic is a curve xa(t) such that

Ua∇aU b = 0

Ua =
dxa

dt

Note that here is an equation for a curve. Writing this out, the geodesic equation is

dxa

dt

∂

∂xa

dxb

dt
+

dxa

dt

dxc

dt
Γb

ac = 0

d2xb

dt2
+ Γb

ac

dxa

dt

dxc

dt
= 0 (41)

(this is the Monge-Ampère equation).

Start with a point and tangent to it, and get a curve! Note that the norm4 of Ua is preserved:

U b∇b(U
aUa) =

(
U b∇bU

a
)

︸ ︷︷ ︸

0 by geodesic

Ua + UaU b∇nUa

= Ua
(
U b∇bU

c
)

︸ ︷︷ ︸

geodesic

gac

= 0

4the norm is the scalar product of U with itself, i.e. N = UaUa

25



The correct generalization of a straight line is the curve of shortest distance, and in fact a geodesic
between two points is the shortest curve between them.

Examples:

1. A straight line in flat space

2. A great circle on a sphere

ds2 = gabdxadxb

⇒ I =

∫ b

a

ds

=

∫ b

a

√

gabdxadxb

While is can be done, this calculation is tricky. It’s easier to start by convincing yourself that a curve
minimizing the distance also minimizes the integrated square distance, so we replace

I =

∫ t2

t1

√

gab
dxa

dt

dxb

dt
dt (42)

by

I ′ =

∫ t2

t1

gab
dxa

dt

dxb

dt
dt (43)

Claim: A curve minimizing I ′ minimizes I.
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Lecture 11 A Geodesic is a curve which parallel transports its tangents.

Ua =
dxa

dt

Ua∇aU b = 0

d2xa

dt2
+ Γa

bc

dxb

dt

dxc

dt
= 0

A geodesic is a shortest path. We shall demonstrate this by showing it extremizes

I =

∫ b

a

√

gab
dxa

dt

dxb

dt
︸ ︷︷ ︸

q

ds2

dt2

dt

This relies on the principle that a path extremizing the integrated square distance extremizes the balance.
Note that the extremum should be either a minimum or a saddle.

I ′ =

∫ b

a

gab
dxa

dt

dxb

dt
︸ ︷︷ ︸

L

dt

This looks like the action S =
∫

L dt, so we may extremize by solving the Euler-Lagrange equation:

d

dt

(
∂L

∂ẋc

)

−
∂L

∂xc
= 0 (44)

⇒
d

dt

(

2gbc
dxb

dt

)

−
∂

∂xc

(
gabẋ

aẋb
)

= 0 (45)

Notation Use the common notation for derivatives:

gab,c :=
∂gab

∂xc
= ∂c gab

⇒ 2gbc
d2xb

dt2
+ 2

dgac

dt
ẋb − gab,cẋ

aẋb = 0

Taking the last term from above
d

dt
gbc =

dxd

dt

d

dxd
gbc

by the chain rule, so

⇒ 2gbc
d2xb

dt2
+ (2gbc,a − gab,c) ẋaẋb = 0 (46)

We symmetrize in a and b, that is rename a↔ b

gbc,aẋ
aẋb = gac,bẋ

bẋa = gac,bẋ
aẋb

The equation becomes
⇒ 2gbcẍ

b + (gbc,a + gac,b − gab,c) ẋbẋa = 0 (47)

Now simply multiply across by 1
2gce, and noting the fact that 1

2gce2gcb = δe
b

⇒
1

2
gec (gbc,a + gac,b − gab,c) := Γe

ab (48)
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Thus equation (47) may be expressed as:

ẍe + Γe
abẋ

aẋb = 0 (49)

This is like a = 0, for a Newton particle with no force; a = ẍe = 0 is not a covariant equation.

10 The Curvature or Riemann Tensor4

∇a∇bUc −∇b∇aUc = RabcdU
d (50)

Unlike ordinary derivatives, the covariant derivative doesn’t commute, since the partial term ∂a from ∇a

acts on the connection on ∇b. Relabelling quantifies this failure5.

We can find an explicit formula for Rabcd from the definition

(†)
︷︸︸︷

∇a (∂bUc − Γe
bcUe)

︸ ︷︷ ︸

(‡)

−∇b (∂bUc − Γe
acUe) = RabcdU

d

Remember the stuff in round brackets is a (0,2) tensor, so (†) has two connection terms acting on (‡).

RabcdU
d = ∂a (∂bUc − Γe

bcUe)− Γd
ab (∂dUc − Γe

dcUe)− Γd
ac (∂bUd − Γe

bdUe)

− ∂b (∂aUc − Γe
acUe) + Γd

ba (∂dUc − Γe
dcUe) + Γd

bc (∂aUd − Γe
adUe) (51)

= Uc,ba − Γe
bc,aUe − Γe

bcUe,a − Γd
abUc,d + Γd

abΓ
e
dcUe − Γd

acUd,b + Γd
acΓ

e
bdUe

− Uc,ba + Γe
ac,bUe + Γe

acUe,b + Γd
baUc,d − Γd

abΓ
e
dcUe + Γd

bcUd,a − Γd
bcΓ

e
adUe (52)

= −Γe
bc,aUe + Γd

abΓ
e
dcUe + Γe

ac,bUe − Γd
abΓ

e
dcUe − Γd

bcΓ
e
adUe + Γd

acΓ
e
bdUe (53)

so

RabceU
e = R e

abc Ue (54)

=
[
Γe

ac,b − Γe
bc,a + Γd

acΓ
e
bd − Γd

bcΓ
e
ad

]
Ue (55)

This is true for all Ue, so

⇒ R e
abc = ∂bΓ

e
bc − ∂aΓe

bc + Γd
acΓ

e
bd − Γd

bcΓ
e
ad (56)

Therefore the Riemann tensor depends on the coordinates and its derivatives, or equivalently on the
metric and its first and second derivatives.

4The following obeys the standards (signs) set in Misner-Wheeler-Thorne (1972)
5like Fab in field theory
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