The Sawtooth function

9 November 2003

This used to be part of a problem sheet, this is why it is laid out in problem sheet format.

1. Sketch the two sawtooth and periodic sawtooth functions described in the next question.

Solution: The sawtooth

and the periodic sawtooth

2. Find the Laplace transform of the saw tooth function

$$f(t) = \begin{cases} t & 0 \le t < 1\\ 0 & t \ge 1 \end{cases} \tag{1}$$

Next, find the Laplace transform of the periodic saw tooth function with period one given by

$$f(t) = t 0 \le t < 1$$

$$f(t+1) = f(t) (2)$$

Solution: From the definition of the Laplace transform and integrating by parts

$$\mathcal{L}(f) = \int_0^\infty f(t)e^{-st} dt = \int_0^1 te^{-st} dt$$

$$= \left[-\frac{t}{s}e^{-st} \right]_{t=0}^1 + \int_{t=0}^1 \frac{1}{s}e^{-st} dt$$

$$= -\frac{1}{s}e^{-sc} + 0 + \left[\frac{1}{-s^2}e^{-st} \right]_{t=0}^{t=1}$$

$$= \frac{1}{s^2} - \frac{1}{s}e^{-s} - \frac{1}{s^2}e^{-s}$$

We know the Laplace transform of the periodic function is

$$\mathcal{L}(f) = \frac{1}{1 - e^{-s}} \int_0^1 f(t)e^{-s} dt$$
 (3)

and this integral is identical to the one we just did in the previous question. So the answer for the periodic saw tooth is

$$\frac{1}{1 - e^{-s}} \left(\frac{1}{s^2} - \frac{1}{s} e^{-s} - \frac{1}{s^2} e^{-s} \right) \tag{4}$$