Brief note on eigenvectors and eigenvalues¹

24 January 2001 and 5 January 2003

A matrix A has eigenvalue λ and eigenvector \mathbf{x} if²

$$A\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

For this to make sense the length of \mathbf{x} must not be zero. For example one of the the eigenvectors of

$$A = \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix} \tag{2}$$

is

$$\mathbf{x}_1 = \begin{pmatrix} 1\\1 \end{pmatrix} \tag{3}$$

with corresponding eigenvalue 3. In fact, the matrix has two eigenvalues, the other one is -1 and the corresponding eigenvector is

$$\mathbf{x}_2 = \begin{pmatrix} 1\\ -1 \end{pmatrix} \tag{4}$$

The general thing is that a $n \times n$ matrix has *n*-eigenvectors.

One thing to notice is that an eigenvector can have any length. This is easy to see, say \mathbf{x} is an eigenvector of A corresponding to λ , then, consider $\mu \mathbf{x}$, the vector you get by multiplying \mathbf{x} by some nonzero number μ . Well

$$A(\mu \mathbf{x}) = \mu A \mathbf{x} = \mu \lambda \mathbf{x} = \lambda(\mu \mathbf{x}) \tag{5}$$

so $\mu \mathbf{x}$ is also an eigenvector corresponding to the same eigenvalue. Taking the example above you could consider

$$2\mathbf{x}_1 = 2\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 2\\2 \end{pmatrix} \tag{6}$$

By multiplying by the matrix you can see that this is also an eigenvector with eigenvalue 3.

The way to calculate the eigenvalues of a matrix is to write down the characteristic equation. This works like this: if \mathbf{x} is an eigenvector with eigenvalue λ then, as before,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (7)

 1 Conor Houghton, houghton@maths.tcd.ie please send me any corrections. These notes are intended to be helpful, feel free to ignore them.

$$A - \lambda \mathbf{1})\mathbf{x} = 0 \tag{8}$$

where **1** is the identity matrix, it is the matrix with ones on the diagonal and zeros everywhere else. Now, if, say you have a matrix, B, with det $B \neq 0$ then there is another matrix B^{-1} so that $BB^{-1} = \mathbf{1}$. In the case of 2×2 matrices you have a formula for the inverse, if

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \tag{9}$$

then the inverse is

$$B^{-1} = \frac{1}{\det B} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
(10)

There are similar, but more complicated, formula for larger matrices. Now, if you have matrix equation

 $B\mathbf{x} = 0 \tag{11}$

you can multiply across by B^{-1} to get

$$B^{-1}B\mathbf{x} = \mathbf{1}\mathbf{x} = \mathbf{x} = 0 \tag{12}$$

In other words, the matrix equation $B\mathbf{x} = 0$ implies $\mathbf{x} = 0$ if B has nonzero determinant. Now, we want the eigenvector to be a nonzero vector so the matrix $A - \lambda \mathbf{1}$ multiplying \mathbf{x} in the eigenvector equation

$$(A - \lambda \mathbf{1})\mathbf{x} = 0 \tag{13}$$

must have a zero determinant. It must happen that

$$\det\left(A - \lambda \mathbf{1}\right) = 0. \tag{14}$$

This is the **characteristic equation**,³ it is the equation for the eigenvalues. If A is 2×2 it is a quadratic equation, for a $n \times n$ matrix it is a degree n polynomial.⁴ In this way, a $n \times n$ matrix will generally have n eigenvalues but, as we have seen, sometimes it has fewer because the characteristic equation has repeated roots.

As an example consider

$$A = \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix} \tag{15}$$

as above. The characteristic equation is

$$\det (A - \lambda \mathbf{1}) = \det \begin{pmatrix} 1 - \lambda & 2\\ 2 & 1 - \lambda \end{pmatrix} = 0.$$
(16)

⁴A degree n polynomial is one where the highest power is n.

²It is very common in print to write vectors in bold: in a book the vector is written as \mathbf{x} but because it is hard to do bold in handwriting it is normal to handwrite \underline{x} . Most people don't use bold for matrices, Kreyszig does. It isn't so important, but it is often confusing if you don't use bold or underlining for vectors.

³Sometime the notation $\chi(A)$, or even, $\chi(A, \lambda)$, is used for det $(A - \lambda \mathbf{1})$. χ is the greek letter *chi* so it is often used to denote things beginning with *ch* where the *ch* is pronounces with a *k* sound.

Or, using the other notation for determinant, det A = |A| the characteristic equation is

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (1-\lambda)(1-\lambda) - 4 = 0.$$
(17)

We can factorize the quadratic

$$(1 - \lambda)(1 - \lambda) - 4 = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) = 0$$
(18)

and so $\lambda = 3$ or $\lambda = -1$ are the eigenvalues.

Find the eigenvectors is easy once you know the eigenvalues. All you do is write down the equation and solve it. Take the example above, let the $\lambda = 3$ eigenvector be

$$\mathbf{x} = \left(\begin{array}{c} a\\ b \end{array}\right) \tag{19}$$

where a and b are unknown, then substitute in to get

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 3 \begin{pmatrix} a \\ b \end{pmatrix}$$
(20)

and so multiplying it out gives

$$\begin{pmatrix} a+2b\\2a+b \end{pmatrix} = \begin{pmatrix} 3a\\3b \end{pmatrix}.$$
 (21)

and so

$$\begin{aligned} a+2b &= 3a \\ 2a+b &= 3b \end{aligned} \tag{22}$$

This looks like two equations, but it isn't. The two equations are both the same and give

$$a = b \tag{23}$$

This is the way it has to be because the matrix $A - \lambda \mathbf{1}_2$ has zero determinant.⁵ Now the equation tells you what *a* is in terms of *b* but doesn't tell you how long **x** is. This is what we expect, since an eigenvector can be any nonzero length. Here

$$\mathbf{x} = \mathbf{0}.\tag{24}$$

⁵If a matrix has zero determinant it means that its two rows are linearly related, in other words, proportional to each other. If $B\mathbf{x} = 0$ this means that \mathbf{x} is perpendicular to the rows of B, so if the rows are all independent \mathbf{x} must be zero. If the determinant of B is zero then the rows are not independent and so, in the 2×2 case, the vector \mathbf{x} must just be perpendicular to the rows. This specifies a direction but not a length.

Don't be worried if the equation just says one of the components is zero. An example of this is the $\lambda = 2$ eigenvector of

 $\left(\begin{array}{cc}
2 & -1 \\
0 & -4
\end{array}\right)$ (25)

where the equation is

$$\begin{pmatrix} 2 & -1 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 2 \begin{pmatrix} a \\ b \end{pmatrix}$$
(26)

and so

$$2a - b = 2a \tag{27}$$

or b = 0. In other words you know that b = 0 but a can be anything, except zero. It cannot be zero because an eigenvector has nonzero length. a = 1 would be a good choice.

Summary

So, in brief summary, to work out the eigenvalues and eigenvectors of a matrix A, you start by writing out the characteristic equation:

$$\det\left(A - \lambda \mathbf{1}\right) = 0\tag{28}$$

To do this you need to recall the formula for the determinant of a matrix. For a 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
(29)

then det A = ad - bc. Next you solve the characteristic equation to find the possible values of λ and finally you work out the eigenvectors by substituting back into the eigenvector equation

 $A\mathbf{x}$

х

$$=\lambda \mathbf{x}$$
 (30)

so, if A is 2×2 , write

$$= \left(\begin{array}{c} a\\b\end{array}\right) \tag{31}$$

and multipling out Eq. 30 this will give an equation for a in term of b.

Reference

A book which describes eigenvectors and eigenvalues in a way which is pertinent to this course is *Linear algebra and its applications* by Gilbert Strang.