Notes on the Z-transform, part 4

15 December 2002

1 Solving difference equations

At the end of note 3 we saw how to solve a difference equation using Z-transforms. Here is a similar example, solve

\[x_{k+2} - 6x_{k+1} - 55x_k = 0 \]

(1)

with \(x_1 = 1 \) and \(x_0 = 0 \). We begin by taking the Z-transform of both sides, remember, if we write \(Z[x_k] = X(z) \) then

\[
Z[(x_{k+1})] = zX - 2x_0 \\
Z[(x_{k+2})] = z^2X - z^2x_0 - zx_1
\]

(2)

so, in this case we get

\[z^2X - z - 6zX - 55X = 0 \]

(3)

or

\[X = \frac{z}{z^2 - 6z - 55} \]

(4)

As before, we do a partial fraction expansion, but, first we move the \(z \) over to the right hand side,

\[
\frac{1}{z}X = \frac{1}{z^2 - 6z - 55} = \frac{1}{(z - 11)(z + 5)} = \frac{A}{z - 11} + \frac{B}{z + 5}
\]

(5)

giving

\[1 = A(z + 5) + B(z - 11) \]

(6)

Choose \(z = 11 \) to learn \(A = 1/16 \) and \(z = -5 \) to learn \(B = -16 \). Therefore,

\[
\frac{1}{z}X = \frac{1}{16(z - 11)} - \frac{1}{16(z + 5)}
\]

(7)

or

\[X = -\frac{1}{16(z - 11)} + \frac{1}{16(z + 5)} \]

(8)

Both terms of the form \(z/(z - r) \) and so

\[x_k = -\frac{1}{16}(11)^k + \frac{1}{16}(-5)^k \]

(9)

The basic process is simple, you take the Z-transform of both sides, you solve for \(X \), you use partial fractions to put it into a convenient form and then work out \(x_k \). In the rest of this note we will look at a variety of examples which exhibit the various difficulties that might be encountered doing this.

1.1 Not zero on the right hand side

Consider the difference equation

\[x_{k+2} - 6x_{k+1} - 55x_k = (-3)^k \]

(10)

with \(x_1 = 0 \) and \(x_0 = 0 \). This is different than the previous example in that the right hand side is not zero, it is \(3^k \). This doesn’t make such a difference, take the Z-transform of both sides, and noting the trivial initial data \((x_0 = 0 \text{ and } x_1 = 0) \),

\[z^2X - 6zX - 55X = Z[(3^k)] = \frac{z}{z + 3} \]

(11)

thus,

\[\frac{1}{z}X = \frac{1}{(z - 11)(z + 5)(z + 3)} \]

(12)

Now, use partial fractions

\[
\frac{1}{(z - 11)(z + 5)(z + 3)} = \frac{A}{z - 11} + \frac{B}{z + 5} + \frac{C}{z + 3}
\]

(13)

or

\[1 = A(z + 5)(z + 3) + B(z - 11)(z + 3) + C(z - 11)(z + 5) \]

(14)

Now, the usual, \(z = 11 \) gives \(A = 1/224 \), \(z = -5 \) gives \(B = 1/32 \) and \(z = -3 \) gives \(C = -1/28 \). Not forgetting the minus in equation (12) this gives

\[X = \frac{1}{224} \frac{z}{z - 11} - \frac{1}{32} \frac{z}{z + 5} + \frac{1}{28} \frac{z}{z + 3} \]

(15)

and so

\[x_k = -\frac{1}{224}(11)^k - \frac{1}{32}(-5)^k + \frac{1}{28}(-3)^k \]

(16)

Remember that the sequence on the right hand side might be a sequence of ones, \(1 = 1^k \), so, consider

\[x_{k+2} - 6x_{k+1} - 55x_k = 1 \]

(17)

with \(x_1 = 0 \) and \(x_0 = 0 \). Take the Z-transform of both sides

\[X - 6zX - 55X = Z[(1^k)] = \frac{z}{z - 1} \]

(18)

and so

\[\frac{1}{z}X = \frac{1}{(z - 11)(z + 5)(z - 1)} \]

(19)

Without going through the calculation, the partial fraction expansion is

\[
\frac{1}{(z - 11)(z + 5)(z - 1)} = \frac{1}{160} \frac{1}{z - 11} + \frac{1}{96} \frac{1}{z + 5} + \frac{1}{60} \frac{1}{z - 1}
\]

(20)

and so,

\[x_k = \frac{1}{160}(11)^k + \frac{1}{96}(-5)^k + \frac{1}{60} \]

(21)
1.2 Repeated root

As happens with Laplace transforms, there can be a repeated root. Consider

\[x_{k+2} - 6x_{k+1} - 55x_k = 11^k \]

(22)

with \(x_1 = 0 \) and \(x_0 = 0 \). Take the \(z \)-transform of both sides

\[X - 6zX - 55X = Z[(11^k)] = \frac{z}{z-11} \]

(23)

and so

\[\frac{1}{z}X = \frac{1}{(z-11)(z+5)} \]

(24)

Now, remember that for repeated root the partial fraction expansion has a term with the root and a term with its square:

\[\frac{1}{(z-11)^2(z+5)} = \frac{A}{z-11} + \frac{B}{z-11} + \frac{C}{z+5} \]

(25)

Thus,

\[1 = A(z-11)(z-5) + B(z+5) + C(z-11)^2 \]

(26)

Now, \(z = 11 \) gives \(B = 1/16 \) and \(z = -5 \) gives \(C = 1/256 \). The problem is that no choice of \(z \) gives \(A \) on its own, instead we chose any value that hasn’t been used before, \(z = 0 \) for example,

\[1 = -55A + 5B + 121C \]

(27)

and now, we substitute for the known values of \(B \) and \(C \),

\[1 = -55A + \frac{5}{16} + \frac{121}{256} = -55A + \frac{201}{256} \]

(28)

Hence

\[-55A = 1 - \frac{201}{256} = \frac{55}{266} \]

(29)

so \(A = -1/256 \). This means that

\[X = -\frac{1}{256} \frac{z}{z-11} + \frac{1}{16} \frac{z}{(z-11)^2} + \frac{1}{256} \frac{z}{z+5} \]

(30)

The only problem now is that the \(z/(z-11)^2 \) term might look unfamiliar, but recall

\[Z[(kr^{k-1})] = \frac{z}{(z-r)^2} \]

(31)

has this form. We get

\[x_k = -\frac{1}{256} 11^k + \frac{k}{16} 11^{k-1} + \frac{1}{256} (-5)^k \]

(32)

1.3 Less convenient initial data

So far the values of \(x_0 \) and \(x_1 \) have been chosen to keep things as simple as possible. More general values of \(x_0 \) and \(x_1 \) might be less convenient, but there is no big change in the method. Consider

\[x_{k+2} - 6x_{k+1} - 55x_k = 0 \]

(33)

with \(x_1 = 2 \) and \(x_0 = 6 \). Taking the \(Z \)-transform of both sides gives

\[zX^2 - 2zX_0 - 2zX + 6zX + 36z - 55X = 0 \]

(34)

and substituting for the initial data

\[zX^2 - 2z^2 - 2z - 6zX + 36z - 55X = 0 \]

(35)

Moving everything around, this gives,

\[X = \frac{6z^2 - 34z}{z^2 - 6z - 55} \]

(36)

We still want a \(z \) on top when we are finished, so move one over:

\[\frac{1}{z}X = \frac{6z - 34}{z^2 - 6z - 55} \]

(37)

and now, remember that the partial fraction expansion works fine provided what on top is a polynomial of degree less than than the polynomial on the bottom, so we have

\[\frac{6z - 34}{(z-11)(z+5)} = \frac{A}{z-11} + \frac{B}{z+5} \]

(38)

or

\[6z - 34 = A(z+5) + B(z-11) \]

(39)

Choose \(z = 11 \) to get

\[66 - 34 = 16A \]

(40)

or \(A = 2 \). \(z = -5 \) gives

\[-30 - 34 = -16B \]

(41)

or \(B = 4 \). Thus,

\[X = \frac{2}{z-11} + \frac{4}{z+5} \]

(42)

and

\[x_k = 2(11)^k + 4(-5)^k \]

(43)
1.4 Examples involving the delay theorem

Consider

\[x_{k+2} - 6x_{k+1} - 55x_k = \delta_k \]

(44)

with \(x_1 = 0 \) and \(x_0 = 0 \). \(\delta_k \) is the unit pulse

\[(\delta_k) = (1, 0, 0, 0, \ldots) \]

(45)

and \(\mathcal{Z}[\delta_k] = 1 \). Hence

\[z^2X - 6zX - 55X = \mathcal{Z}[\delta_k] = 1 \]

(46)

so

\[X = \frac{1}{(z-11)(z+5)} \]

(47)

Using the partial fraction expansion, this gives

\[X = \frac{1}{16z-11} - \frac{1}{16z+5} \]

(48)

The problem now is that there are no \(z \)'s on top. However, if we rewrite it as

\[X = \frac{1}{z} \left[\frac{1}{16z-11} - \frac{1}{16z+5} \right] \]

(49)

Now, the part inside the square brackets has the form we are familiar with, we can see

\[\mathcal{Z} \left[\left(\frac{1}{16} \right)^k - \left(\frac{-5}{16} \right)^k \right] = \frac{1}{16z-11} - \frac{1}{16z+5} \]

(50)

and we also know from the delay theorem that the effect of multiplying by \(1/z^k \) is to delay the sequence by \(k \) steps. Hence, the sequence here is delayed by one step and

\[x_k = \begin{cases} 0 & \text{if } z = 0 \\ \frac{1}{16}11^{k-1} - \frac{1}{16}(-5)^{k-1} & \text{if } z \geq 1 \\ \end{cases} \]

(51)

Of course, the sequence on the right might be more complicated, consider

\[x_{k+2} - 6x_{k+1} - 55x_k = y_k \]

(52)

with \(x_1 = 0 \) and \(x_0 = 0 \) where

\[(y_k) = (0, 2, 0, 0, 0, \ldots) \]

(53)

We have to calculate \(\mathcal{Z}[(y_k)] \) before we can make any progress. However, it is easy to see that \((y_k) \) is the first delay of twice the unit pulse \((y_k) = 2(\delta_{k-1}) \) so

\[\mathcal{Z}[(y_k)] = \frac{2}{z} \]

(54)

Thus the Z-transform of the difference equation gives

\[z^2X - 6zX - 55X = \frac{2}{z} \]

(55)

so,

\[X = \frac{2}{z(z-11)(z+5)} \]

(56)

There are two ways to go on from here, the first is to use the previous partial fractions expansion

\[X = \frac{2}{z} \left[\frac{1}{16z-11} - \frac{1}{16z+5} \right] \]

(57)

\[= \frac{2}{z} \left[\frac{1}{16z-11} - \frac{1}{16z+5} \right] \]

(58)

so now we are dealing with a two step delay and, keeping the extra factor of two in mind

\[x_k = \begin{cases} 0 & \text{if } z \leq 1 \\ \frac{1}{16}11^{k-2} - \frac{1}{16}(-5)^{k-2} & \text{if } z \geq 2 \\ \end{cases} \]

(59)

The other way to make progress is to work out the partial fraction expansion

\[\frac{1}{z(z-11)(z+5)} = \frac{1}{16z-11} - \frac{1}{16z+5} + \frac{1}{80z+5} \]

(60)

This means that

\[X = \frac{2}{z} \left[\frac{1}{16z-11} - \frac{1}{16z+5} \right] \]

(61)

and using the delay theorem

\[x_k = \begin{cases} 0 & \text{if } z = 0 \\ -\frac{2}{55}4_{k-1} + \frac{1}{55}11^{k-1} + \frac{1}{40}(-5)^{k-1} & \text{if } z \geq 1 \\ \end{cases} \]

(62)

Now, it might look like this is a very different answer, but it isn’t, expression (59) and expression (62) are actually the same. Now that putting \(k = 1 \) in (62) gives

\[-\frac{2}{55}0 + \frac{1}{55}11^0 + \frac{1}{40}(-5)^0 = -\frac{2}{55} + \frac{1}{88} + \frac{1}{40} = 0 \]

(63)

and, what’s more, \(11^{k-1} = 11 \times 11^{k-2} \) and \((-5)^{k-1} = -5 \times (-5)^{k-2} \).
2 Exercises

1. Solve the difference equation \(x_{k+2} - 4x_{k+1} - 5x_k = 0 \) with \(x_0 = 0 \) and \(x_1 = 1 \).

2. Solve the difference equation \(x_{k+2} - 9x_{k+1} + 20x_k = 2^k \) with \(x_0 = 0 \) and \(x_1 = 0 \).

3. Solve the difference equation \(x_{k+2} + 5x_{k+1} + 6x_k = (-2)^k \) with \(x_0 = 0 \) and \(x_1 = 0 \).

4. Solve the difference equation \(x_{k+2} + 2x_{k+1} - 48x_k = 0 \) with \(x_0 = 4 \) and \(x_1 = 2 \).

5. Solve the difference equation \(x_{k+2} + 7x_{k+1} - 18x_k = \delta_k \) with \(x_0 = 0 \) and \(x_1 = 0 \).

1. So take the Z-transform of both sides

\[
z^2X - z - 4zX - 5X = 0
\]

and move things around to get \(X/z \) on one side and then do partial fractions

\[
\frac{1}{z}X = \frac{1}{z^2 - 4z - 5} = \frac{1}{(z - 5)(z + 1)} = \frac{A}{z - 5} + \frac{B}{z + 1}
\]

In the usual way, we have

\[
1 = A(z + 1) + B(z - 5)
\]

and putting \(z = 5 \) gives \(A = 1/6 \) and putting \(z = -1 \) gives \(B = -1/6 \). Now

\[
X = \frac{z}{6(z - 5)} - \frac{1}{6(z + 1)}
\]

and hence

\[
x_k = \frac{1}{6}z^k - \frac{1}{6}(-1)^k
\]

2. So, in this example, the right hand side of the difference equation is not zero. Taking the Z-transform of both sides we get

\[
z^2X - 9zX + 20X = z[2^k] = \frac{z}{z - 2}
\]

Hence, since \(z^2 - 9z + 20 = (z - 5)(z - 4) \)

\[
\frac{1}{z}X = \frac{1}{(z - 5)(z - 4)(z - 2)}
\]

The usual partial fractions tells us that

\[
\frac{1}{(z - 5)(z - 4)(z - 2)} = \frac{1}{3(z - 5)} - \frac{1}{2(z - 4)} + \frac{1}{6(z - 2)}
\]

and so

\[
x_k = \frac{1}{3}2^k - \frac{1}{2}4^k + \frac{1}{6}2^k
\]

3. Again, taking the Z-transport of both sides we have

\[
z^2X + 5zX + 6X = \frac{z}{z + 2}
\]

Now, since \(z^2 + 5z + 6 = (z + 2)(z + 3) \)

\[
\frac{1}{z}X = \frac{1}{(z + 2)(z + 3)}
\]
and there is a repeated root. The partial fraction expansion with a repeated root includes the root and its square, so we get
\[\frac{1}{(z + 2)^2(z + 3)} = \frac{A}{z + 2} + \frac{B}{(z + 2)^2} + \frac{C}{z + 3} \] (75)
and so
\[1 = A(z + 2)(z + 3) + B(z + 3) + C(z + 2)^2 \] (76)
Choosing \(z = -2 \) gives \(B = 1 \) and \(z = -3 \) gives \(C = 1 \). No value of \(z \) will give \(A \) on its own, so we choose another convenient value and put in the known values of \(B \) and \(C \):
\[1 = 6A + 3 + 4 \] (77)
so \(A = -1 \). Now, this means
\[X = -\frac{z}{z + 2} + \frac{z}{(z + 2)^2} + \frac{z}{z + 3} \] (78)
and so
\[x_k = (-2)^k + k(-2)^{k-1} + (-3)^k \] (79)
4. Take the Z-transform of both sides, taking care to note the initial conditions
\[z^2X - 4z - 2z + 2(zX - 4z) - 48X = 0 \] (80)
Thus
\[z^2X + 2zX - 48X = 4z^2 - 10z \] (81)
giving
\[\frac{1}{z}X = \frac{4z - 10}{(z + 8)(z - 6)} = \frac{A}{z + 8} + \frac{B}{z - 6} \] (82)
Multiplying across we get
\[4z - 10 = A(z - 6) + B(z + 8) \] (83)
Choosing \(z = -8 \) we have
\[-42 = -14A \] (84)
implying \(A = 3 \). Choosing \(z = 6 \)
\[14 = 14B \] (85)
so \(B = 1 \) and we get
\[X = \frac{3z}{z + 8} + \frac{z}{z - 6} \] (86)
and
\[x_k = 3(-8)^k + 6^k \] (87)
5. Now, taking the Z-transform and using \(Z[(\delta_k)] = 1 \)
\[z^2X + 7zX - 18X = 1 \] (88)
and so
\[X = \frac{1}{z^2 + 7z - 18} = \frac{1}{(z - 9)(z + 2)} = \frac{1}{11(z - 9)} - \frac{1}{11(z + 2)} \] (89)
Thus
\[X = \frac{1}{z} \left(\frac{z}{11(z - 9)} - \frac{z}{11(z + 2)} \right) \] (90)
and so, using the delay theorem, we have
\[x_k = \begin{cases} 0 & k = 0 \\ \frac{9^k - 1}{11} - \frac{(-2)^{k-1}}{11} & k > 0 \end{cases} \] (91)