2E2 Tutorial Sheet 4 First Term, Solutions!

31 October 2003
1. (2) Use Laplace transform methods to solve the differential equation

" / . 1, 0<t<e
preop-sr={ o )5 (1)
subject to the initial conditions f(0) = f'(0) = 0. (3)

Solution: Taking Laplace transforms of both sides and using the tables for the Laplace
transform of the right hand side function, leads to
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Concentrating on the partial fractions part, we have
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From the tables, we know that

11, 1 11 11 1 1
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and then using the second shift theorem
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f(t) 3t 28 T3¢ c(t)( s tz¢ T e (5)

. (3) Use Laplace transform methods to solve the differential equation

0, 0<t<1
Fryof —3f=4{ 1, 1<t<?2 (6)
0, t>2

subject to the initial conditions f(0) =0 and f’(0) = 0.

Solution:So the thing here is to rewrite the right hand side of the equations in terms
of Heaviside functions. Remember the definition of the Heaviside function:

Ha(t):{(l] i;;‘ (7)

so the Heaviside function is zero until a and then it is one. The right hand side is
zero until ¢ = 1 and then it is one until ¢ = 2 and then it is zero again. Consider
H,(t) — Hs(t), this is zero until you reach ¢ = 1, then the first Heaviside function
switches on, the other one remains zero. Things stay like this until you reach t = 2,
then the second Heaviside function switches on aswell and you get 1 — 1 = 0. Thus

0, 0<t<«1
Hi(t)—Hy(t)=¢ 1, 1<t<2 (8)
0, t>2
Now, using
6—(18
L(H(1) = = )
we take the Laplace transform of the differential equation:
e~ 6—23
$°F 4+ 2sF —3F = — — (10)
s s
This gives
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Now, if you look at the soln to problem sheet 4, question 3 you'll see that
1 1 1 1

ss—1)(s+3) 35 ds—1)  12(s+3)

and we know that
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In other word, if it wasn’t for the expontentials we’d know the little f. However,

we know from the second shift thereom that the affect of the exponential e~ is to
change ¢ to t — a and to introduce an overall factor of H,(t). Thus
1 1 1 1 1 1

—H - - t—1 = 3t+3 ) H - - t—2 - —3t+6 14

f 1(t)< st18 T3¢ 2(t) st1¢ T3¢ (14)

. (3) Use Laplace transform methods to solve the differential equation
ff2f =3f=6(t—1) (15)

subject to the initial conditions f(0) = 0 and f’(0) = 1.

Solution:The only thing that is unusual is that there is a delta function. We take the
Laplace transform using

L(5(t—a)) = e (16)

hence
(425 —3)F —1=¢"° (17)

Now, if we do partial fractions on 1/(s% + 2s — 3) we get
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Hence
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then, by the second shift theorem we have
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