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1. (3) Assuming the solution of
y′′
− 3x2y = 0 (1)

has a series expansion about x = 0 work out the recursion relation and write out the
first four non-zero terms if y(0) = 1 and y′(0) = 1.

We substitute

y =

∞
∑

n=0

a
n
xn (2)

into the equation. This gives

∞
∑

n=0

n(n− 1)a
n
xn−2

−

∞
∑

n=0

3a
n
xn+2 = 0 (3)

The problem here is with the powers of x. The easiest thing is to change everything
to the highest power, in this case n + 2. Hence, put m + 2 = n− 2 in the first sum

∞
∑

n=0

n(n− 1)a
n
xn−2 =

∞
∑

m=−4

(m + 4)(m + 3)a
m+4x

m+2. (4)

and substitute that back into the equation, writing m as n:

∞
∑

n=−4

(n + 4)(n + 3)a
n+4x

n+2
−

∞
∑

n=0

3a
n
xn+2 = 0 (5)

and so the problem now is that the ranges are different. We need to take out the
first few term of the first sum, well, the n = −4 and n = −3 terms are zero and so

∞
∑

n=−4

(n + 4)(n + 3)a
n+4x

n+2 = 2a2 + 6a3x +

∞
∑

n=0

(n + 4)(n + 3)a
n+4x

n+2. (6)

Now the equation reads

2a2 + 6a3x +
∞

∑

n=0

(n + 4)(n + 3)a
n+4x

n+2
−

∞
∑

n=0

3a
n
xn+2 = 0 (7)

or

2a2 + 6a3x +
∞

∑

n=0

[(n + 4)(n + 3)a
n+4 − 3a

n
] xn+2 = 0. (8)
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Thus

a2 = 0

a3 = 0

a
n+4 =

3

(n + 4)(n + 3)
a

n
(9)

where the recursion relation applies for n = 0, 1, . . .. Now, y(0) = 1 implies a0 = 1
and y′(0) = 1 implies a1 = 1, next, with n = 0, t he recursion gives

a4 =
1

4
a0 =

1

4
(10)

and with n = 1

a5 =
3

20
a1 =

3

20
. (11)

Now since a2 = a3 = 0 the n = 2 recusion gives a6 = 0 and the n = 3 recursion g
ives a7 = 0. However, n = 4 gives

a8 =
3

32
a4 =

3

128
(12)

and so

y = 1 + x +
1

4
x4 +

3

20
x5 +

3

128
x8 + . . . . (13)

Aside. In the above we made all the powers the same as the highest power, this is
usually the easiest thing, but it is just a matter of convenience. If we had decided to
make them equal the smallest power i nstead, we would have substituted n+2 = m−2
in the second sum to get

∞
∑

n=0

n(n− 1)a
n
xn−2

−

∞
∑

n=4

3a
n−4x

n−2 = 0 (14)

and we would then remove the first four term from the first sum to get

2a2 + 6a3x +
∞

∑

n=4

[

n(n− 1)a
n
xn−2

− 3a
n−4

]

xn−2 = 0 (15)

and so

a2 = 0

a3 = 0

a
n

=
3

n(n− 1)
a

n−4 (16)
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where now the recursion relation applies to n = 4, 5, . . . because that is what is in
the sum. Another way of proceeding is to define a−4 = a−3 = a−2 = a−1 = 0 and
then rewrite the equation as

∞
∑

n=0

n(n− 1)a
n
xn−2

−

∞
∑

n=0

3a
n−4x

n−2 = 0 (17)

and carry on from there.

2. (2) Assuming the solution of
y′
− 3xy = 2 (18)

has a series expansion about x = 0, work out the recursion relation and write out
the first four non-zero terms.

Solution: The complication here is that unlike the other examples we have examined,
this equation is an inhomogeneous equation. However,the thing to do is to press on
with the same methods and hope for the best.

y =
∞

∑

n=0

a
n
xn (19)

gives, when substituted into the equation,

∞
∑

n=0

na
n
xn−1

−

∞
∑

n=0

3a
n
xn+1 = 2 (20)

and so the first problem is with the powers of x, let m + 1 = n − 1 in the first sum
to give

∞
∑

n=0

na
n
xn−1 =

∞
∑

m=−2

(m + 2)a
m+2x

m+1 (21)

and, noting the the m = −2 term is zero, we take out the first two terms to get

a1 +
∞

∑

n=0

[(n + 2)a
n+2 − 3a

n
]xn+1 = 2. (22)

Now, notice that the summand starts with an x term and so we get

a1 = 2

a
n+2 =

3

n + 2
a

n
. (23)

Thus,

a2 =
3

2
a0 (24)

3

and
a3 = a1 = 2. (25)

Hence

y = a0

(

1 +
3

2
x2 + . . .

)

+ 2x + 2x3 + . . . (26)

and we see that the solution to this inhomogeneous solution has the usual structure: a
particular part and a solution to the homogeneous equation depending on an arbitrary
constant.

3. (3) Use the method of Froebenius to find series solutions for

xy′′ + 2y′ + xy = 0 (27)

about x = 0.

Solution: So, since we are told to use the method of Froebenius, we substitute

y =

∞
∑

n=0

a
n
xn+r (28)

Even if you weren’t told this was a method of Froebenius problem, you would soon
find that the ordinary method doesn’t give two solutions. Alternatively, you could
notice that if you write the equation so nothing multiplies y ′′ you have coefficients
with singularities, that is in this case, the 2/x multiplying y′.

Now, substituting into the equation gives

∞
∑

n=0

[(n + r)(n + r − 1) + 2(n + r)]a
n
xn+r−1 +

∞
∑

n=0

a
n
xn+r+1 = 0. (29)

so, moving the first power up to the second one, this gives

∞
∑

n=−2

[(n + 2 + r)(n + r + 1) + 2(n + r + 2)]a
n+2x

n+r+1 +
∞

∑

n=0

a
n
xn+r+1 = 0 (30)

or, taking the first two terms out

r(r + 1)a0x
r−1 + (r + 1)(r + 2)a1x

r +
∞

∑

n=0

[(n + 2 + r)(n + r + 3)]a
n+2x

n+r+1 +
∞

∑

n=0

a
n
xn+r+1 = 0. (31)

So, if r = 0 or r = −1 then there is no constraint on a0. Notice that r = −1 allows
two solutions because, if r = −1 there is no equation for either a0 or a1. For r = −1
the recursion is

a
n+2 =

1

(n + 1)(n + 2)
(32)
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so the first few non-zero terms are

y =
1

x

[

a0

(

1 +
1

2
x2 +

1

24
x4 + . . .

)

+ a1

(

x +
1

6
x3 . . .

)]

(33)

For r = 0 the recursion is

a
n+2 =

1

(n + 2)(n + 3)
(34)

and a1 = 0, this means that the r = 0 solution is

y = a0

(

1 +
1

6
x2 + . . .

)

(35)

Notice that the r = 0 solution is actually just the a1 solution for r = −1. This is
just as well because there would be too many solutions otherwise. Notice the subtle
way the method of Froebenius problems often work out. There is quite a lot to
this subject we have only touched on. As an aside, notice the the solutions to the
differential are cos x/x and sin x/x. WWriting these out as series will give the same
thing as above.
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