2E2 Tutorial Sheet 16 Second Term, Solutions

24 February 2004

1. (3) Assuming the solution of

\[(1-x)y' + y = 0\]

has a series expansion about \(x = 0\) work out the recursion relation. Write out the first few terms and show that the series terminates to give \(y = A(1-x)\) for arbitrary \(A\).

Solution: So we begin by writing

\[y = \sum_{n=0}^{\infty} a_n x^n\]

and so by differentiation we get

\[y' = \sum_{n=0}^{\infty} a_n n x^{n-1}\]

and hence

\[xy' = \sum_{n=0}^{\infty} a_n n x^n.\]

Thus, substituting the differential equation we get

\[\sum_{n=0}^{\infty} a_n n x^{n-1} - \sum_{n=0}^{\infty} a_n n x^n + \sum_{n=0}^{\infty} a_n x^n = 0\]

In order to make progress we need to rewrite the first of these three series so that it is in the form

\[\sum_{n=0}^{\infty} \text{stuff}_n x^n\]

so that all three bits in the equation match. Well, let \(m = n - 1\) in the expression for \(y'\), (3), to get

\[y' = \sum_{m=0}^{\infty} a_{m+1} (m+1) x^m.\]

In fact, this looks at first like it gives

\[y' = \sum_{m=0}^{\infty} a_{m+1} (m+1) x^m\]

but the \(m = -1\) term is zero, so that’s fine. Now \(m\) is just an index so we can rename it \(n\), don’t get confused, this isn’t the original \(n\), we just want all parts of the equation to look the same.

In fact, we now have

\[\sum_{n=0}^{\infty} a_{n+1} (n+1) x^n - \sum_{n=0}^{\infty} a_n n x^n + \sum_{n=0}^{\infty} a_n x^n = 0\]

and we can group this all together to give

\[\sum_{n=0}^{\infty} \left[(n+1)a_{n+1} + (1-n)a_n\right] x^n = 0.\]

The recursion relation is

\[a_{n+1} = -\left(\frac{1-n}{1+n}\right) a_n\]

and this applies to \(n\) from zero upwards since that is what appears in the sum sign.

Starting at \(n = 0\) we have

\[a_1 = -a_0.\]

For \(n = 1\) we get

\[a_2 = 0\]

and the series terminates here because every term is something multiplied by the one before and so if \(a_2\) is zero the rest of the series is zero. Thus \(y = a_0(1-x)\) for arbitrary \(a_0\).

2. (3) Assuming the solution of

\[(1-x^2)y' - 2xy = 0\]

has a series expansion about \(x = 0\), work out the recursion relation and write out the first four non-zero terms.

Solution: Assuming the solution of

\[(1-x^2)y' - 2xy = 0\]

has a series expansion about \(x = 0\), work out the recursion relation and write out the first four non-zero terms.

Answer: Once again let

\[y = \sum_{n=0}^{\infty} a_n x^n\]

1Conor Houghton, houghton@maths.tcd.ie and http://www.maths.tcd.ie/~houghton/ 2E2.html
and the equation becomes

$$\sum_{n=1}^{\infty} a_n x^{n+1} - 2 \sum_{n=1}^{\infty} a_{n+1} x^n = 0.$$

(24)

The problem now is with the range that the first sum runs over. The $n= -2$ term is a problem, as it doesn't have the same form as the other two. So, take

$$\sum_{n=1}^{\infty} a_n x^{n+1} = a_1 + 2a_2x + 2a_3x^2 + \cdots + 2a_m x^{m+1} + \cdots = 0,$$

and put $x = -1$ and hence, $n = m - 2$. When $n = 0$, $m = 2$ and when $n = 1$, $m = 1$. Thus, we write

$$\sum_{n=1}^{\infty} a_n x^{n+1} = a_1 + 2a_2x + a_3x^2 + \cdots + a_{m-2}x + 2a_{m+1} x^{m+1} + \cdots = 0.$$

(25)

Once again, the first term is a problem because it doesn't have the same form as the other two. So, take

$$\sum_{n=0}^{\infty} a_n x^{n+1} = a_1 x + 2a_2x^2 + a_3x^3 + \cdots + a_{m-2}x^{m-1} + 2a_{m+1} x^m + \cdots = 0.$$

(26)

and as before.

$$y' = \sum_{n=1}^{\infty} a_n x^{n-1} \quad \text{and} \quad y'' = \sum_{n=0}^{\infty} na_n x^{n-1}.$$

(17)

The equation then reads

$$y'' = \sum_{n=1}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} = \sum_{n=2}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} + \sum_{n=1}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1}.$$

(18)

The equation then reads

$$y'' = \sum_{n=2}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} + \sum_{n=2}^{\infty} \left[a_2 + (n-1)^2 a_{n-2} x^{n-1} \right].$$

(19)

The equation then reads

$$y'' = \sum_{n=2}^{\infty} \left[a_2 + (n-1)^2 a_{n-2} x^{n-1} \right].$$

(20)

The equation then reads

$$y'' = \sum_{n=2}^{\infty} a_{n-2} x^{n-1}.$$

(21)

The equation then reads

$$y'' = \sum_{n=2}^{\infty} a_{n-2} x^{n-1}.$$

(22)

The problem now is with the range that the first sum runs over. The $n= -2$ term is a problem, as it doesn't have the same form as the other two. So, take

$$\sum_{n=2}^{\infty} a_{n-2} x^{n-1} = a_0 + \frac{a_2}{x} + \frac{a_4}{x^2} + \cdots + \frac{a_m}{x^{m-2}} + \cdots = 0.$$

(23)

Notice that the summand starts with the x term. The recursion relation is therefore

$$a_n - 2a_{n+2} - a_{n+3} = 0.$$

(24)

and the $m = -2$ and $m = -1$ terms are both zero, so, renaming the $m = n$, we get

$$\sum_{n=1}^{\infty} a_{n+1} x^n = \sum_{n=1}^{\infty} a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n+1} x^n = \sum_{n=1}^{\infty} a_{n+1} x^n + 2 \sum_{n=1}^{\infty} a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n+1} x^n = 0.$$

(25)

The same thing can be done with the y'' to get

$$y'' = \sum_{n=1}^{\infty} (n-1)^2 a_{n-2} x^{n-1} = \sum_{n=1}^{\infty} (n-1)^2 a_{n-2} x^{n-1} + 2 \sum_{n=1}^{\infty} a_{n-2} x^{n-1} + \sum_{n=1}^{\infty} a_{n-2} x^{n-1} = 0.$$

(26)

and the $m = -2$ and $m = -1$ terms are both zero, so, renaming the $m = n$, we get

$$\sum_{n=1}^{\infty} a_{n+1} x^n + 2 \sum_{n=1}^{\infty} a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n+1} x^n = 0.$$

(27)

Thus

$$\sum_{n=1}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} = \sum_{n=1}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} + \sum_{n=1}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} + \sum_{n=1}^{\infty} \left(n^2 - 1 \right) a_n x^{n-1} = 0.$$

(28)

The solution then reads

$$y = a_0 \left(1 + \frac{a_2}{x} + \frac{a_4}{x^2} + \cdots + \frac{a_m}{x^{m-2}} + \cdots \right).$$

(29)
and this gives

\[\sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2} - 3(n+1)a_{n+1} + 2a_n = 0. \]
(37)

The recursion relation is

\[(n+1)(n+2)a_{n+2} - 3(n+1)a_{n+1} + 2a_n = 0. \]
(38)

Now apply the initial conditions, \(y(0) = 1 \) implies that \(a_0 = 1 \), \(y'(0) = 0 \) implies \(a_1 = 0 \). For \(n = 0 \) the recursion relation gives

\[2a_2 - 3a_1 + 2a_0 = 0 \]
(39)

and so \(a_2 = -a_0 = -1 \). Next \(n = 1 \) gives

\[6a_3 - 6a_2 + 2a_1 = 0 \]
(40)

and so \(a_3 = a_2 = -a_0 = -1 \). Therefore the first three nonzero terms are

\[y = 1 - x^2 - x^3 + \ldots. \]
(41)