1. (2) Use Laplace transform methods to solve the differential equation

\[
 f'' + 2f' - 3f = \begin{cases}
 1, & 0 \leq t < c \\
 0, & t \geq c
 \end{cases}
\]

subject to the initial conditions \(f(0) = f'(0) = 0 \).

2. (3) Use Laplace transform methods to solve the differential equation

\[
 f'' + 2f' - 3f = \begin{cases}
 0, & 0 \leq t < 1 \\
 1, & 1 \leq t < 2 \\
 0, & t \geq 2
 \end{cases}
\]

subject to the initial conditions \(f(0) = f'(0) = 0 \).

3. (3) Use Laplace transform methods to solve the differential equation

\[
 f'' + 2f' - 3f = \delta(t - 1)
\]

subject to the initial conditions \(f(0) = 0, f'(0) = 1 \). Remember the Laplace transform of the delta function gives \(\mathcal{L}[\delta(t - a)] = e^{-as} \).