13 April 2004

Vectors calculus. With \(f(x, y, z) \) a scalar field the grad of \(f \), \(\nabla f \), is

\[
\text{grad } f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}
\]

(1)

1. (2) \(f = x^2 + 2x^2yz \), find grad \(f \). If \(g = x^2yz + 2z \), what is \(\nabla f \cdot \nabla g \).

2. (2) Find the directional derivative of \(z = (x^2 + y^2) \) in the direction \(\mathbf{i} \).

3. (2) \(f = xyz \), work out grad \(f \). What is the value of grad \(f \) at \((2, 1, 2)\). What is the directional derivative of \(f \) in the \(\mathbf{i} \)-direction at \((2, 1, 2)\).

4. (2) \(f = x^2 + y^2 + z^2 \), find grad \(f \). What is the directional derivative of \(f \) in the direction of \(\mathbf{b} = (1, 1, 1) \) at the point \((1, 1, 1)\). Remember to use a unit vector when working out the directional derivative. What is the directional derivative in the \(\mathbf{i} \) direction at \((1, 0, 0)\); what about the \(\mathbf{j} \) direction?

\(^1\)Conor Houghton, houghton@maths.tcd.ie and http://www.maths.tcd.ie/~houghton/ 2E2.html