
The classification of critical points1
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The idea behind this note is to gather together in one place the different possible critical
points. It only covers what has already been covered in the lectures.

The idea is that you have a pair of linear equations written in matrix form

y′ = Ay (1)

where A is a two by two matrix with two eigenvectors. The other example, where A has
only one eigenvector, we looked at separately and is found on page 167 of K. If there are
two eigenvectors then there are five possibilities.

Both eigenvalues real

A proper node. λ1 = λ2. This is a trivial case, it is what happens if the matrix A is
diagonal with equal entries, for example,

A =

(

1 0
0 1

)

(2)

so the eigenvalue is λ = 1 but there are two eigenvectors

x1 =

(

1
0

)

(3)

and

x2 =

(

0
1

)

(4)

so the general solution is

y = c1

(

1
0

)

et + c2

(

0
1

)

et =

(

c1

c2

)

et. (5)

For any c1 and c2 the vector gets longer but its direction stays the same, so the phase
trajectories are radial lines from the origin.
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Of course, if the eigenvalue is negative the arrows point in rather than outward.

An improper node. λ1 and λ2 have the same sign but are different. Say they are
both positive, then the general solution is given by

y = c1x1e
λ1t + c2x2e

λ2t. (6)

Now, say λ1 > λ2 then for t very large eλ1t is huge compared to eλ2t, so whatever values
of c1 and c2 you start off with, you end up with a much bigger number multiplying x1

than multiplies x2. This means the trajectory ends up going parallel to x1. In the phase
diagram the bend as they go away from the origin so that they become more and more
parallel to x1.

As an example, consider the equations that came up in question 1 of problem sheet 2.
This had

A =

(

3 1
1 3

)

(7)

with eigenvalues and vectors λ1 = 4 with

x1 =

(

1
1

)

(8)

and λ2 = 2 with

x2 =

(

−1
1

)

(9)
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so the general solution is

y = c1

(

1
1

)

e4t + c2

(

−1
1

)

e2t. (10)

The phase-diagram is

As with the proper node, it could also happen that the two eigenvalues are negative, in
which case the arrows would point inward rather than outward. A long way from the
origin, the trajectories bend so that they are parallel to the larger, in the sense of more
negative, of the two eigenvalues. The way to think about this is to ask, for a given c1 and
c2 where did the trajectory come from, in other words what happens for large negative t.
Thus, if λ1 = −4 with

x1 =

(

1
1

)

(11)

and λ2 = −2 with

x2 =

(

−1
1

)

(12)

the phase diagram would be
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A saddle-point. λ1 and λ2 have different signs. As before the general solution is

y = c1x1e
λ1t + c2x2e

λ2t. (13)

Say λ1 is positive and λ2 is negative. If you start somewhere along the x2 direction, then
you go inwards because the number multiplying x2 gets smaller and smaller as time passes
because of the exponential with a negative power. If you start of anywhere else, the number
multiplying x1 gets bigger and bigger while the number multiplying x2 gets smaller and
smaller. Thus, as you go out the trajectory gets closer and closer to x1. This is different
from the improper node where one exponential gets much bigger than another so that the
trajectory ends up parallel to one of the eigenvectors. Here one of the exponentials actually
gets small, so the trajectory ends up getting closer and closer to the line along one of the
eigenvectors.

An example is question 2 in problem sheet 2. Another example is

A =

(

0 1
1 0

)

(14)

so the eigenvalue is λ1 = 1 but there are two eigenvectors

x1 =

(

1
1

)

(15)

and λ = −1 with

x2 =

(

1
−1

)

(16)
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the phase diagram is

Eigenvalues complex

When the eigenvalues are complex they are complex conjugates of each other. There are
two cases.
A center. λ1 and λ2 both pure imaginary. In this case the trajectories are circles or
ellipses. Often the easiest thing to do to plot the trajectories is to start on the y1 axis and
use

eiθ = cos θ + i sin θ (17)

An example is

A =

(

0 1
−4 0

)

(18)

so the eigenvalue is λ1 = 2i but there are two eigenvectors

x1 =

(

1
2i

)

(19)

and λ = −2i with

x2 =

(

1
−2i

)

(20)
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This means the general solution is

y = c1

(

1
2i

)

e2it + c2

(

1
−2i

)

e−2it (21)

so begin on the y1 axis by letting y1(0) = r and y2(0) = 0. The solution is then

y = r

(

cos 2t
−2 sin 2t

)

(22)

so the trajectories are ellipsis. Every t = π the system comes back around and the vertical
radius is twice the horizontal radius. The phase diagram is

The trajectories go anticlockwise because the sine part is negative and the cosine part
positive, think what happens for small t, y1 is still pretty close to r and y2 is negative.

A spiral. λ1 and λ2 have a real part. In this case the trajectories are spirals, if the
real part is positive the spiral is outward, if it is negative, the spiral is inward.

An example is given in problem sheet 2, question 3. The matrix is

A =

(

−1 −2
2 −1

)

(23)

and so the spectrum is complex, λ1 = −1 + 2i with eigenvector

x1 =

(

i

1

)

(24)
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and λ2 = −1− 2i with eigenvector

x2 =

(

−i

1

)

(25)

The solution is then

y =

(

y1

y2

)

= c1

(

i

1

)

e(−1+2i)t + c2

(

−i

1

)

e(−1−2i)t. (26)

Now, if y1(0) = 2 and y2(0) = 0, for example, this means
(

2
0

)

= y(0) = c1

(

i

1

)

+ c2

(

−i

1

)

. (27)

and hence c1 = −i and c2 = i. Now using exp (a + ib) = exp a exp ib we have solution

y =

[(

1
−i

)

e2it +

(

1
i

)

e−2it

]

e−t. (28)

and so

y =

[(

1
−i

)

(cos 2t + i sin 2t) +

(

1
i

)

(cos 2t− i sin 2t)

]

e−t (29)

= 2

(

cos 2t
sin 2t

)

e−t (30)

and this gives the inward spiral. The phase diagram is
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