2009/10 Schol paper 1, my questions, outline
solutions.

1. The Laplace transform of a function f(t), ¢ > t is a function of s defined
as -
Lol = [ roear

Show
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where a is a constant and you may assume s > a. Show that,

r {%} — SLIF(1)] - £(0)

where you can assume
tlim fMe =0
By taking the Laplace transform of both sides of the equation solve
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=2f
dt f

where f(0) = —1.

Solution:So you just have to follow this question along; first

Llet) = [ el tar = BRI
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where we have assumed that s > a in order to evaluate the exponential
at infinity.

Next, from the definition
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Now use integration by parts
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Finally taking the Laplace transform of both sides of the differential
equation gives

sCIFO]+1 =2L[f(1)] (4)
s0, solving gives
1
LIFO+1=-— (5)
s—2
and, hence, by the above, and noting that the transform is linear
ft)y =~ (6)

2. Write the on-off pulse

-1 O0<t<m
0 otherwise

1 —-7m<t<0
ft) =
as a Fourier integral.

Solution:Well lets apply the definition and integrate
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Now, putting all that together

fﬂ(l;) = i - # cos Tk (8)

3. Find the general solution of



Solution:First off, substitute into the homogenous equation
y=c¢

giving
N3N 4+3A-1=0

which factorizes as
A—=12=0

so the homogenous equation has general solution
y = (C1 +tCy 4+ 12C3)e"
Hence, to match the right hand side we need to substitute
y = Ot

SO

Yy = Ctlel +3Ct%!
y' = Ot'e' +60t%" + 6Cte!
y" = Ctle! +9Ct%! + 18Cte! + 6C¢!

(10)
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All the terms with ¢ outside the exponential in them cancel and we get

6C =1

and hence the solution to the inhomogenous equation is
1
y= <01 +1Cy + °C + 6t3) et

. Find the general solution of
12+ 3ty +y = t*

Solution:So this is an Euler equation, let

t=¢"
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and
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Now, the equation becomes
d*y dy
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which can be solved using the normal substitution to give
-z 1 2z
y=(C1+Coz)e " + 3¢

or
1 1
Yy = (Cl + CQlOgt)Z + §t2

(19)
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