
Creative Experiments Using a System for Learning High-Level Performance
Structure in Ableton Live

Aengus Martin, Craig T. Jin
Computing & Audio Research Lab

Sydney University
NSW 2006, Australia

{aengus.martin,craig.jin}@sydney.edu.au

Ben Carey
Faculty of Arts and Social Sciences
University of Technology, Sydney

NSW 2007, Australia
benjamin.carey@uts.edu.au

Oliver Bown
Design Lab

Sydney University
NSW 2006, Australia

oliver.bown@sydney.edu.au

ABSTRACT

The Agent Design Toolkit is a software suite that we have
developed for designing the behaviour of musical agents;
software elements that automate some aspect of musical
composition or performance. It is intended to be accessi-
ble to musicians who have no expertise in computer pro-
gramming or algorithms. However, the machine learning
algorithms that we use require the musician to engage with
technical aspects of the agent design, and our research goal
is to find ways to enable this process through understand-
able and intuitive concepts and interfaces, at the same time
as developing effective agent algorithms.

Central to enabling musicians to use the software is to
make available a set of clear instructional examples show-
ing how the technical aspects of agent design can be used
effectively to achieve particular musical results. In this pa-
per, we present a pilot study of the Agent Design Toolkit in
which we conducted two contrasting musical agent design
experiments with the aim of establishing a set of such ex-
amples. From the results, we compiled a set of four clear
examples of effective use of the learning parameters which
will be used to teach new users about the software. In ad-
dition, we identified a range of improvements which can
be made to the software itself.

1. INTRODUCTION

One focus in the field of interactive computer music is on
computational systems which are capable of autonomous
musical performance in a way that is responsive to external
musical factors. Such systems can engage in performance-
time interactions in a wide variety of ways, among which
are the emulations of roles traditionally filled by human
performers, as well as in new ways made possible by the
computational medium [1]. A number of authors have con-
ceptualised the internal structure of these systems as a lis-
tening module, which parses the incoming musical data; a
decision-making module which makes musical decisions,
influenced by the input; and an output module which gen-
erates sound according to the decisions made [2–4]. In this

Copyright: c©2012 Aengus Martin, Craig T. Jin et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

work, we are concerned with the decision-making module
and we will refer to it as a musical agent.

Musical agents can be designed and implemented using
a variety of programmable, real-time interactive music en-
vironments such as Max, Pure Data and SuperCollider, in
addition to lower level, general-purpose programming lan-
guages, such as C++, Java and Python. However, no plat-
forms exist which support the design of musical agents by
musicians who are not proficient in algorithms and com-
puter programming. In order to address this, we have de-
veloped a software tool for designing musical agents. It is
called the Agent Design Toolkit and it was first introduced
in [5].

The Agent Design Toolkit (ADTK) is a software tool in-
tended for the design of musical agents that perform with
a collection of musical objects: software instruments, au-
dio effects and low level algorithmic processes. Our agents
make relatively high-level musical decisions (see next sec-
tion). The software supports the following user stages in
an iterative design process:

1. Record a set of example performances, in which the
human performer controls the parameters of a soft-
ware music system;

2. Configure a set of machine learning algorithms and
run them to produce an agent;

3. Audition the agent;
4. Return to either Step 1 or Step 2, if the user seeks

improvements or variations.

The paradigm in which a designer iteratively improves
the output of machine learning algorithms by adding and
editing training data, is known as interactive machine
learning (IML) [6]. The design paradigm that is supported
by the ADTK incorporates IML, in that it allows a musi-
cian to iteratively improve an agent by editing and sup-
plementing the set of example performances. The IML
paradigm was proposed as a way to avoid requiring the de-
signer to perform feature selection. This is a phase of the
traditional machine learning workflow that, in general, re-
quires considerable technical expertise in the problem do-
main (i.e. in the area in which the machine learning al-
gorithms are being applied). However, we view feature
selection as an essential way for a musician—as the indi-
vidual most familiar with the specific musical context in
which they are working—to incorporate his/her musical
knowledge into an agent. In machine learning terms, this

mailto:aengus.martin@sydney.edu.au
mailto:benjamin.carey@uts.edu.au
mailto:oliver.bown@sydney.edu.au
http://creativecommons.org/licenses/by/3.0/


is especially important when using machine learning algo-
rithms to learn patterns in the extremely high-dimensional
space associated with musical decision-making while hav-
ing, potentially, very few training examples. Thus, while
incorporating IML, the ADTK also includes the feature se-
lection phase, despite the fact that it may be difficult for
some musicians.

The ADTK has a point-and-click style graphical user in-
terface (GUI), and we have integrated it into two popu-
lar music performance platforms; Max and Ableton Live
(see next section). In this way it fulfils our aim that the
musician not be required to have computer programming
expertise. However, it requires the musician (i) to com-
plete the feature selection phase associated with the tradi-
tional machine learning paradigm and (ii) to set some of
the parameters of the machine learning algorithms. We
refer to these stages collectively as the learning configu-
ration. The learning configuration has a huge effect on
the musical agent which results from the machine learn-
ing algorithms; the way in which it is carried out can make
the difference between an agent which successfully emu-
lates the musical behaviour in the examples, and one that
does not. Moreover, requiring the musician to perform the
learning configuration makes possible an entirely different
design approach in which the the example performances
are used only as a starting point of an exploratory design
process which may have new and unexpected musical re-
sults. Thus, as developers of a design tool, it is not our
aim to remove or automate the learning configuration, but
rather to present it in such a way that it can be effectively
and creatively engaged in by musicians who have no ma-
chine learning expertise.

One way of making the system more easily accessible
to musicians is to provide clear examples by which any
user could learn how to make effective use of the learning
configuration to achieve specific objectives. In this paper,
we report on a set of musical agent design experiments in
which we aimed to establish a set of guidelines and di-
dactic examples to be used as introductory and support
material for new users of the software. Furthermore, the
planned use of this material is to inform users participating
in an upcoming HCI-informed study of the ADTK.

In the following section, we give a more detailed descrip-
tion of the ADTK. We then present the musical context for
two agent design experiments. In Section 4 we present the
iterative design processes that took place, before proceed-
ing in Section 5, to discuss the findings in terms of their
contribution to our stated objective and their implications
for the future development of the ADTK.

2. THE AGENT DESIGN TOOLKIT

In this section, we give an overview of the Agent De-
sign Toolkit (for a full description, see [5]). First, we use
the term music system to refer to a set of software instru-
ments, digital audio effects and algorithmic processes, all
of which are parametrically controlled. The ADTK is in-
tended for the design of musical agents that provide high-
level control of a music system. In other words, it is in-
tended for the design of musical agents that sequence mu-

sical elements such as segments of MIDI or audio, rather
than generating individual notes or gestures.

To design a musical agent with the ADTK, the first step
is to record a set of example performances with the mu-
sic system. For each one, the musician performs with the
system and throughout the performance, regular snapshots
are taken of the values of the parameters used to control
the system. Since the ADTK is intended for agents which
operate at a high level of control, the rate at which these
snapshots are taken is quite low; in metrically structured
music, a typical configuration is to take one snapshot at
the beginning of each bar.

2.1 The ADTK with Ableton Live

The Ableton Live music software package (Live) fits well
with the ADTK because the main activity of a musician
performing with Live is the sequencing of pre-composed
musical elements, such as MIDI and audio segments; i.e.
relatively high-level musical decision-making. For the
study presented in this paper, all of the musical agents were
designed for Live using a version of the ADTK which has
been integrated into the Live software package.

Since it is germane to the discussion in Section 4, we
give here some of the terminology associated with Live,
and note one limitation of the current ADTK Live imple-
mentation. In the terminology of Live, the entire collection
of pre-composed musical elements, as well as audio effects
and software instruments, is referred to as a Live set; the
pre-composed musical elements are called clips and these
are arranged in tracks in which only one clip can play at
a time. The set of parameters which control a live set in-
cludes a parameter for each track indicating which clip is
playing as well as the parameters relating to the audio ef-
fects and software instruments. We will refer to this set of
parameters as the music system parameters.

One limitation of the current ADTK Live implementation
is that it requires the time signature to be set to 4/4: When
recording an example it takes snapshots of the parameter
values on the first beat of each bar, and when controlling a
Live set, the agent’s decision-making computation is trig-
gered on the third beat of each bar so that the computation
can be completed in time for the parameters to be set on
the first beat of the following bar. In the remainder of this
section, we will discuss only the version of the ADTK im-
plemented for Live.

2.2 Machine Learning algorithms

To record an example, the ADTK takes a snapshot of the
parameters associated with the Live set once per bar. This
means that an example can be represented as a grid or ma-
trix of values in which each row corresponds to a particular
music system parameter, and each column, to a snapshot.
The ADTK employs two separate machine learning (ML)
algorithms to learn patterns in the example performances
and we mention them briefly here (technical details of their
use and the way in which their outputs are combined at
performance time are given in [5] and [7]). First, variable
order Markov models (VMMs) [8] are used to model tem-
poral patterns, that is, patterns in the rows of the matrix



Activity Description
Feature selection “Custom variables” are created. These are extra parameters, the purpose of which

is to help the ML algorithms find the salient musical patterns in the example data.
Examples of custom variables are the sum, which represents the sum of the values of a
group of music system parameters; and the any-greater-than which is a binary-valued
variable that indicates whether the value any of a group of music system parameters
are greater than a certain threshold. Custom variables can depend on other custom
variables, e.g. a sum could represent the sum of a group of any-greater-than variables.

Rule group selection Groups are defined, each of which contains a selection of music system parameters
and custom variables. The ARL algorithms only search for dependencies among the
parameters within each group. Groups may have members in common.

Rule learning configuration Parameters of the ARL algorithms are set. The ARL algorithms have a number of
parameters associated with them, e.g. the “minimum confidence”, which is a measure
of the certainty required for a dependency to be found.

VMM configuration Parameters related to the VMMs are set. These include the selection of music system
parameters and custom variables which are modelled by VMMs, and the maximum or-
der of each VMM. The maximum order is related to the length of the temporal patterns
that a VMM is capable of modelling.

Parameter priority selection A “priority” is set for each VMM-modelled music system parameter or custom vari-
able. This is necessary to resolve certain conflicts that can occur at performance time.

Table 1. The activities related to feature selection and machine learning algorithm configuration (collectively: learning
configuration) involved in designing a musical agent (for more details, see [5]). As mentioned in Section 2.2, association
rule learning is abbreviated by ARL and variable order Markov model is abbreviated by VMM.

describing how individual parameters change over time.
Second, association rule learning (ARL) algorithms (see,
e.g. [9]) are used to search for patterns in the dependen-
cies between parameters; patterns related to the combina-
tions of parameter values that can occur at any given time.
Setting the parameters related to these ML algorithms is
part of the learning configuration carried out during the de-
sign process. As a reference for later sections, we provide
a complete list of the learning configuration activities in
Table 1.

3. EXPERIMENTS

We conducted two musical agent design experiments. The
aims were to demonstrate ways in which the ADTK can be
used; to find ways of creating agents exhibiting particular
musical behaviours; and to find illustrations of the ways in
which the learning configuration can affect outcomes. Our
underlying objective was to produce results which would
form the basis for a set of support materials for participants
in an upcoming HCI study of the ADTK.

The third and fourth authors of this paper are active com-
puter music practitioners. Each lead one of the musical
agent design experiments, with the aim of designing an
agent relevant to his computer music practise. In this sec-
tion, we provide an overview of the musical context and
expectations of each experiment, before giving details of
the outcomes in the next section.

3.1 Improvised electro-acoustic music

The first agent design experiment was led by the third au-
thor. The musical context was that of improvised electro-
acoustic music. A Live set was created, containing a col-

lection of sounds which could be combined at performance
time. The collection included both synthetic and acous-
tic sounds of various morphologies, from long synthetic
timbres to articulate, rough and granular textures. The
idea was to use these materials as a palette of sound ob-
jects with which to perform an improvised electro-acoustic
piece. For live performance, Ableton Live was controlled
using the TouchAble software 1 running on an Apple iPad.

The design process was intended largely to be an ex-
ploratory one; it would not begin with a clearly defined
agent behaviour in mind. However, as the Live set was
developed, certain piece-specific musical expectations did
emerge. Most important of these was the gradual change
from sections which were quite dense (i.e. with many lay-
ers of sound) to ones which were more sparse, and vice
versa. A second expectation was the constant variation of
the order in which sound materials were sequenced and
the ways in which they were juxtaposed; during a perfor-
mance, repetition of particular sound combinations or se-
quences was rare.

3.2 Drum and bass

The second agent design experiment was led by the fourth
author. The musical context was that of drum and bass.
The primary compositional element in most drum and bass
music is the breakbeat, or break, a sampled drum pattern
typically taken from an existing musical recording. An ex-
tremely widespread example is the “amen break”, taken
from the track “Amen Brother” by the Winstons [10].

A typical approach to composing drum and bass begins
with time-stretching or compressing the source breakbeats

1 www.touch-able.com



so that they match the tempo of the track. Then, deriva-
tives of each source breakbeat are created by slicing up
the originals in different ways so that during performance,
longer-term drum patterns can be created by sequencing a
breakbeat and its derivatives. In Ableton Live, this can be
done for each source breakbeat by copying it into a number
of different clips on a particular track, and setting different
start and end loop points for each one. Thus, each drum
instrument in the composition corresponds to a particular
track in the Live set.

For this work, a Live set suitable for drum and bass per-
formance was prepared as follows. Using a standard suite
of breaks, downloaded from www.junglebreaks.co.uk, four
drum tracks were composed, each with seven different
variants of a source breakbeat. In each drum track, clips
with lower numbers (those positioned towards the top of
the track) had a more standard structure, meaning that they
provided a steady beat, generally following a standard 4/4
drum and bass pattern, whereas clips towards the bottom
of the track were fills, meaning that they had a short loop
or a different pattern. One of the four tracks had a harsh
filter effect applied to it and was to be used either for more
intense fills or as a high intensity section. In addition, two
bassline tracks were composed with two different variants
which could be mixed in different ways to give further
structure to the track.

Example performances were made controlling the Live
set using a Novation LaunchPad 2 . Performances were
made in the drum and bass style. We end this section
by giving some typical genre-specific expectations for per-
forming with this material:

• A typical four bar loop might involve 3 bars of a reg-
ular clip followed by 1 bar of fill, with different fills
filling the last bar. Variations of this pattern include:
the pattern AABC; dropping the drums for the last
bar and introducing a bassline, which then remains;
or remaining on the same pattern for all four bars but
then changing to a different pattern for the first bar
of the following four bars. Many other options are
possible here but a unifying expectation is that the
beginning of each 4 bar cycle is sufficiently empha-
sised that the listener does not lose track of it (al-
though creatively pushing this threshold is of inter-
est).

• A typical drum and bass song structure might in-
volve an intro section consisting only of variations
of one drum beat, followed by a drop down section,
possibly involving no drums but a new melodic el-
ement such as a bassline, followed by the simulta-
neous introduction of bass line and stronger drums.
In general, the material can be thought of as form-
ing into rough groupings over time scales of 32 or
more bars, which forms a general structuring princi-
ple when improvising with this material.

• Typically only one or two drum tracks would be ac-
tive simultaneously, and the essence of interaction
between drum parts is their concatenation.

2 www.novationmusic.com

4. RESULTS

In this section we describe the design process conducted
in each experiment. We pay particular attention to tech-
niques for eliciting specific musical behaviours, and in the
next section we summarise these techniques. We also note
musical behaviours which were difficult or impossible to
achieve, and in the next section discuss how to improve the
ADTK with respect to these. The following subsections
should be read with reference to Section 2 and particularly
Table 1.

4.1 Design of the electro-acoustic agent

The design process began with the creation of just one ex-
ample performance. There were eight music system pa-
rameters, one for each track indicating the clip playing in
that track. As an initial learning configuration, all of the
parameters were added to a single rule group, and VMMs
of low maximum order (between one and five) were cre-
ated for five of the eight parameters. All other details of
the learning configuration were left in their default states.

The agent resulting from the initial learning configuration
was auditioned. It was found that the sequence of clips
chosen for each VMM-modelled track was musically ap-
propriate; clip sequences were similar to those in the ex-
ample data and individual clips were played for durations
similar to those in the example data (this is a result of the
well-known learning properties of VMMs). However, the
agent’s choice of combinations of clips to play simultane-
ously was too limited. This is because, the small num-
ber of examples did not demonstrate enough variety. The
ARL algorithms treat the example data statistically, and
in searching for association rules there is nothing to dis-
tinguish between associations which constitute real musi-
cal patterns, and ones which are simply coincidences to be
found in the data. Thus, a few iterations were conducted in
which new examples were added to demonstrate new areas
of the space of possible combinations of sounds, and the
agent was auditioned each time to find areas of this space
into which it did not venture. With the additional exam-
ples, fewer spurious rules were found by the ARL algo-
rithms (the total number of rules found was reduced from
more than 200, to less than 100).

At this point, the agent explored widely in the space of
clip combinations (but avoided some combinations delib-
erately avoided in the examples), while retaining appropri-
ate within track sequencing. However, longer term struc-
ture was missing from the agent’s performances. As men-
tioned in Section 3.1, gradual changes in density were an
important element of the improvised music. Density, in
turn, could be related to the number if clips simultane-
ously playing. To embed this knowledge into the agent,
the following changes were made to the learning configu-
ration. One any-greater-than custom variable was created
for each track, indicating if the track is playing any clip
(value 1), or stopped completely (value 0). Then an extra
custom variable, labelled density, was created which rep-
resented the sum of the any-greater-than custom variables.
A VMM, was applied to the density variable, so that the
number of simultaneously playing clips was modelled ex-



plicitly in the agent’s behaviour. A high maximum order
was required for this VMM (10 was used) to model the
gradual increases and decreases in density found in the ex-
amples. The agent resulting from this learning configura-
tion performed with a long term structure much more like
that in the examples.

It was not possible to control certain aspects of musical
behaviour. For instance, in the example data, there were
frequent periods of a few bars in which no changes were
made; sounds were allowed to continue. However, the
agent usually changed the clip playing in at least one track,
at each new bar. Adding VMMs to each track mitigated
this somewhat, but not completely. The inability to con-
trol the number of changes taking place at each new bar
introduced a secondary issue. With changes occurring on
one or more tracks at each bar, a slow tempo was imposed
on the performance which was not present in the example
performances.

4.2 Design of the drum and bass agent

The design of the drum and bass agent began with a train-
ing session in which performances were made, in line with
the genre-specific expectations listed in Section 3.2. Simi-
lar to the electro-acoustic agent, the music system parame-
ters were for controlling which clips were playing in each
track. As a starting point, a naive learning configuration
was chosen in which a single rule group was formed, con-
taining all music system parameters and no VMMs were
used.

The agent resulting from this initial learning configura-
tion performed with no clearly discernible patterns (per-
formances sounded “random”). Without any VMMs, there
was no continuity to the sequencing of any of the instru-
ments. Though association rules were found which ruled
out certain combinations of clips according to the example
performances, they were not sufficient to impose any clear
structure.

Over a number of design iterations, VMMs were added
and their orders were adjusted experimentally. This gave
rise to within-track continuity, meaning that the clip se-
quences corresponding to individual tracks were musically
appropriate. However, the metrical structure of the exam-
ples, most importantly the four-bar patterns described in
Section 3.2, was not reproduced.

To introduce metrical structure, the following procedure
was carried out. An extra track containing four empty clips
and labelled metric, was added to the Live set. The built-in
clip sequencing features of Live were used to configure the
Live set such that during an example performance, these
clips were played cyclically, in sequence. Thus, when new
examples were recorded, the sequence of values for the
music system parameter corresponding to the metric track
was simply {1, 2, 3, 4, 1, 2, 3, 4, . . .}. Next, for each drum
track, a binary-valued custom variable was created indicat-
ing whether the clip being played in the track was a basic
breakbeat, or a fill. In addition, for each drum track, a
rule group was created containing the custom variable cor-
responding to that track, and the music system parameter
corresponding to the metric track. With this learning con-

figuration, important rules were found corresponding to the
observation that when the metric track is playing clip 1, 2
or 3, a standard breakbeat is playing, whereas when the
metric track is playing clip 4, a fill is playing. Finally, low
order VMMs were added to the drum and bass tracks and a
first order VMM was added to the metric track, so that dur-
ing performance, the agent simply maintained a repeating
four-bar count. The effects of introducing metrical struc-
ture in this way are illustrated using a reduced example in
Figure 1.

The musical agent arising from the learning configura-
tion just described, exhibited strong metrical structure in
its performance, using standard breakbeats primarily on
the first three of each four-bar unit and a fill on the fourth.
Furthermore, fills were chosen probabilistically, based on
VMMs, so there was variety to the performance. Addi-
tional custom variables were introduced to the learning
configuration, similar to the introduction of the density
custom variable to the electro-acoustic agent design (see
Section 4.1), which controlled the number of bass tracks
simultaneously playing, and the number of drum tracks si-
multaneously playing.

One of the musical expectations in drum and bass is the
song structure (see Section 3.2). It was not possible to in-
troduce clear song structure to the behaviour of the drum
and bass agent. One reason for this is that when the VMMs
are used at performance time to choose values for music
system parameters, they begin with a random value choice
and this choice could correspond to any part of the song
structure. In addition, the ADTK interface limited the
maximum VMM order to ten and this limits the length of
temporal structure that can be modelled.

5. DISCUSSION

As stated in Section 1, the aim of the experiments just de-
scribed was to explore and document the core creative pos-
sibilities of the ADTK in a way that can be emulated in
a range of creative contexts. Thus, in Section 5.1 below,
we compile the results into a succinct list of techniques
and associated examples which will form the basis of a
significant part of the support material for the ADTK. In
Section 5.2 we propose ways to improve the ADTK to en-
able the design of agents exhibiting those behaviours that
were difficult or impossible to achieve in the design exper-
iments. Finally, in Section 5.3 we discuss the ADTK and
these results in the context of related work.

5.1 Proven creative techniques

The following is a list of the key techniques, which we will
illustrate using video tutorials which highlight different as-
pects of the designs outlined in the previous section:

1. The overall density, or number of tracks playing si-
multaneously, can be modelled using a combination
of custom variables (see the creation of the density
custom variable in Section 4.1). Variants of this
technique could also be used to model the number
of active audio effects.



Figure 1. The effects of using the technique described in Section 4.2 to introduce metrical structure to an agent’s perfor-
mance. (a) A simple demonstration example. The four-bar count is visible in the “dummy” Metric track. Drum fills are
marked by darker colours and occur only on the fourth bar. (b) An agent’s performance with no metric modelling (i.e. the
four-bar count is ignored). (c) An agent’s performance with metric modelling: drum fills appear in the appropriate places.

2. High maximum order VMMs are required to model
longer patterns, while low maximum order VMMs
are sufficient to model shorter patterns, or to ensure
that a parameter’s value, from bar to bar, changes
in a similar way to the examples (see the uses of
different orders in the electro-acoustic agent, Sec-
tion 4.1). While these are well-known characteris-
tics of the VMM, they bear considerable attention
in enhancing a musician’s creative engagement with
the ADTK.

3. Repeating metrical structure can be modelled by us-
ing “dummy tracks” custom variables, and appro-
priately chosen rule groups (see the introduction of
metrical structure in Section 4.2). We note that in
the future, the ADTK will have built in features to
acquire metrical data and will not require a dummy
track to be created.

4. Techniques such as that described in (1) above can
be applied to subsets of music system parameters,
as required (see the use of custom variables in Sec-
tion 4.2 similar to the density variable).

Missing from this list are specific examples demonstrating
effective use of the rule learning configuration and param-
eter priorities (see Table 1). Various rule learning config-
urations were used during the agent design processes re-
ported here. However, no situations arose in which careful
choice of the rule learning configuration could be shown to
have consequences which clearly manifested in an agent’s
musical behaviour. Similarly, no examples were found in
which the choice of parameter priorities clearly affected an
agent’s behaviour.

5.2 ADTK improvements

Certain musical behaviours were difficult or impossible to
achieve in the agent design experiments and with these in
mind, we propose a number of improvements to make to
the ADTK. First, as described in Section 4.1, a tempo was
imposed on the agent’s performance because it was not
possible to control the number of parameter changes oc-
curring at each update. To improve on this, we propose
to add custom variables to model the change in a music

system parameter from one bar to the next. The musician
could then create custom variables to model the number of
changes in music system parameters over time.

To address the difficulty in designing an agent which con-
forms to typical drum and bass song structures (see Sec-
tion 4.2) we propose three improvements to the ADTK.
The first is trivial and that is to increase the highest maxi-
mum VMM order which can be used. The second is to in-
troduce a feature whereby the designer can choose a block
size, b, for each music system parameter. Temporal se-
quences of values for this parameter would then be treated
in blocks of size b. Each unique block would be enu-
merated and VMMs would model the sequence of blocks,
rather than the sequence of individual parameter values.
Further research is required to determine the most effective
way to manage the rule learning algorithms when param-
eters of different block sizes are included in a single rule
group. Lastly, the VMM implementation could be modi-
fied such that the initial value of each VMM-modelled pa-
rameter is drawn from a probability distribution calculated
from the initial values taken by the parameter in the set
of examples. This modelling of a parameter’s initial value
would be made available as an option in the learning con-
figuration.

5.3 Related work

The ADTK is, to our knowledge, a unique tool in that it
makes musical agent design accessible to musicians with
no computer programming expertise. While the exam-
ples of effective use of the learning configuration that we
arrived at through creative experimentation are essential
findings on which to base the support material for the
ADTK, they do not represent new findings from the point
of view of machine learning and music. For instance, the
learning parameters related to VMMs and related statisti-
cal models have been previously studied in the context of
musical style learning by Pachet [11] and Conklin [12],
respectively, among others. However, bringing together
the different machine learning algorithms in this way, as
well as the powerful modelling made possible by musician-
performed feature selection, presents a new paradigm for
musical agent design.

The ADTK can be related to Fiebrink’s Wekinator soft-



ware, which supports the IML paradigm in the context of
learning mappings from input device parameters, to sound
synthesis parameters in digital instrument design. Espe-
cially relevant to this work, are the findings in [13] regard-
ing the use of the Wekinator by users who had no expertise
in machine learning or related disciplines. We will build on
these findings in the unsupervised machine learning con-
text presented by the ADTK.

6. CONCLUSION

The creative techniques identified in this work will help
form the basis of a set of support materials for the Agent
Designer Toolkit. In addition, the extra features proposed
will enable the creation of more sophisticated agents suit-
able for a greater variety of musical contexts. These fea-
tures, along with the support materials, will be incorpo-
rated into the ADTK in preparation for its evaluation in an
upcoming HCI study.

7. REFERENCES

[1] O. Bown, A. Eldridge, and J. McCormack, “Under-
standing Interaction in Contemporary Digital Music:
from instruments to behavioural objects,” Organised
Sound, vol. 14, no. 2, pp. 188–196, 2009.

[2] R. Rowe, Interactive Music Systems. Cambridge, MA:
MIT Press, 1993.

[3] T. Winkler, Composing Interactive Music: Techniques
and Ideas Using Max. Cambridge, MA: MIT Press,
2001.

[4] T. Blackwell and M. Young, “Self-organised music,”
Organised Sound, vol. 9, no. 2, pp. 123–136, 2004.

[5] A. Martin, C. T. Jin, and O. Bown, “A Toolkit for De-
signing Interactive Musical Agents,” in Proceedings
of the 23rd Australian Computer-Human Interaction
Conference, Canberra, Australia, 2011, pp. 186–189.

[6] J. A. Fails and D. R. Olsen, “Interactive machine learn-
ing,” in IUI ’03: Proceedings of the 8th Interna-
tional Conference on Intelligent User Interfaces, Mi-
ami, USA, 2003.

[7] A. Martin, C. T. Jin, and O. Bown, “Implementation
of a real-time musical decision-maker,” in Proceedings
of the Australasian Computer Music Conference, Bris-
bane, Australia, 2012.

[8] D. Ron, Y. Singer, and N. Tishby, “The power of am-
nesia: Learning probabilistic automata with variable
memory length,” Machine Learning, vol. 25, no. 2-3,
pp. 117–149, 1996.

[9] T. Hastie, R. Tibshirani, and J. H. Friedman, The el-
ements of statistical learning: data mining, inference,
and prediction, 2nd ed. Springer, 2009.

[10] S. Collins, “Amen to that: sampling and adapting the
past,” M/C Journal, vol. 10, no. 2, 2007.

[11] F. Pachet, “The continuator: Musical interaction with
style,” Journal Of New Music Research, vol. 32, no. 3,
pp. 333–341, 2003.

[12] D. Conklin, “Music Generation from Statistical Mod-
els,” in Proceedings of the AISB 2003 Symposium on
Artificial Intelligence and Creativity in the Arts and
Sciences, Aberystwyth, Wales, 2003, pp. 30–35.

[13] R. Fiebrink, P. Cook, and D. Trueman, “Human model
evaluation in interactive supervised learning,” in CHI
2011, Vancouver, BC, Canada, 2011, pp. 147–156.


	 1. Introduction
	 2. The Agent Design Toolkit
	2.1 The ADTK with Ableton Live
	2.2 Machine Learning algorithms

	 3. Experiments
	3.1 Improvised electro-acoustic music
	3.2 Drum and bass

	 4. Results
	4.1 Design of the electro-acoustic agent
	4.2 Design of the drum and bass agent

	 5. Discussion
	5.1 Proven creative techniques
	5.2 ADTK improvements
	5.3 Related work

	 6. Conclusion
	 7. References

