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ABSTRACT 

In this paper, we present a novel implementation of a 
real-time musical decision-maker. In our scenario, the 
behaviour of a musical decision-making agent is 
specified as a constraint satisfaction problem. Generally, 
constraint satisfaction problems are solved using 
methods which are not suitable for real-time musical 
performance, because the amount of time they will take 
to arrive at a solution is unpredictable. We have 
developed a musical decision-making agent which can 
solve some musical constraint problems (i) in a 
predictable length of time and (ii) usually much more 
quickly than alternative methods. It works by using an 
efficient data structure called a binary decision diagram 
to represent the constraint satisfaction problem. 

1. INTRODUCTION 

We use the term musical agent to refer to a 
computational entity intended to play music either 
autonomously or alongside a human performer. The 
computer music literature contains many reports on 
musical agents (see, e.g. [6] for a review) and a great 
variety of algorithms and architectures have been used in 
their implementation [10, 12, 20]. Less attention has 
been paid to the methodology of designing musical 
agents—that is, to the approaches to the design of 
musical agents which are not specific to particular music 
systems or situations.  

We have previously studied a number of approaches 
to the creation of tools with which musicians can design 
the musical decision-making behaviour of a musical 
agent for use in their creative work. We have studied the 
use of partially observable Markov decision processes 
(POMDPs), whereby a musician can design aspects of an 
agent’s behaviour by tuning the reward function of a 
POMDP model [13]. In addition, we have studied a 
design-by-example approach in which a musician can 
specify the behaviour of an agent by supplying examples 
of the desired behaviour [15]. 

In these studies, the focus was on design methods 
with two particular characteristics. The first is that they 
do not require musicians to be experts at computer 
programming or algorithm implementation or 
development (though, of course, they may be). The 
second is that the musician’s aim is to design agents 
which make relatively high-level musical decisions, for 
example, the sequencing of musical elements such as 
sound samples and short MIDI sequences; or controlling 

the parameters of digital audio effects or processes 
which generate low-level musical material. 

Recently we introduced a toolkit for the design of 
musical agents, which was also created with the 
aforementioned characteristics in mind [14]. The Agent 
Design Toolkit allows a musician to design the behaviour 
of a musical agent by first recording some examples of 
the desired behaviour and then following an iterative 
design process in which the musician can add to, or edit 
the examples, as well as adjust the parameters of a set of 
machine learning algorithms which learn the musical 
patterns in the example data. At each design iteration, an 
agent is created, which the musician can audition in 
order to decide what modifications to make to the 
examples and/or the parameters of the machine learning 
algorithms. This paradigm, in which a user interacts with 
machine learning algorithms iteratively to arrive at a 
satisfactory result, is known as interactive machine 
learning [7] and it was first used in the context of 
computer music by Fiebrink et al [8]. 

The Agent Design Toolkit is comprised primarily of 
two separate pieces of software. The first is the Agent 
Designer, which is used to record examples and run the 
machine learning algorithms. Its output is an agent 
behaviour specification; a file which specifies the 
behaviour of a musical agent. This file is then loaded 
into the performer module for real-time use in a musical 
performance. 

In this paper, we report an a completely new 
implementation of the performer module, which is much 
more computationally efficient and is capable of 
executing far more complex behaviours than was 
previously possible with the toolkit. It relies on the use 
of a data structure called a binary decision diagram [4], 
which can be used to solve certain types of 
computational problems much more efficiently than with 
alternative methods. 

The remainder of this paper is structured as follows. 
In Section 2, we give an overview of the Agent Design 
Toolkit and how it is used. In Section 3, we describe the 
performer module and our new implementation using 
binary decision diagrams. In Section 4, we discuss the 
performance improvements using the new performer 
module. In Section 5, we discuss the Agent Design 
Toolkit and its application in the context of other 
research, before concluding in Section 6. 



2. OVERVIEW OF THE AGENT DESIGN 
TOOLKIT 

In [14] we describe the Agent Design Toolkit and 
discuss a preliminary study of its use. In this section, we 
give a detailed overview of the toolkit. This will provide 
the context for understanding the issues involved in the 
implementation of the performer module. 

2.1. Design paradigm 

Our goal is to enable the creation of musical decision-
making agents that can be adapted by music practitioners 
to their specific creative contexts. In a typical scenario, a 
musician has assembled a music system comprising an 
ensemble of virtual instruments, digital audio effects and 
algorithmic processes, all of which can be parametrically 
controlled (i.e. there is a set of variables whose values 
determine the output of the music system). An example 
of such a system is an Ableton Live project 
(www.ableton.com). In this context, the project is the 
music system which the musical decision-making agent 
will control. The Agent Design Toolkit provides a means 
for a music practitioner who is not an expert in 
algorithms or computer programming to design the 
behaviour of such an agent. The agent’s decision making 
process can involve the use of external musical 
variables, e.g. incoming MIDI data and therefore the 
Agent Design Toolkit can be used to create both 
generative and interactive music systems.  

2.2. Machine Learning Algorithms 

Here, we give an overview of the machine learning 
algorithms used in the Agent Design Toolkit to learn the 
musical patterns in the example data. Separate machine 
learning algorithms are used to model (i) the -
dependencies between the variables which control the 
music system and (ii), the manner in which they change 
over time. For (i), we use association rule learning 
(ARL) algorithms (see, e.g. [9]). These algorithms can 
be used to find deterministic rules describing 
dependencies between the variables. The rules are in the 
form of implies rules. For example, a music system may 
have separate variables which control the activity of the 
bass drum, the snare drum and the hi-hat, and the 
following rule may be discovered: 

 
Bass drum = On, Snare drum = On ! Hi-hat = On 

 
which can be read as “when the bass drum and the snare 
drum are sounding, then the hi-hat is sounding too”. The 
musician can configure various aspects of the rule 
learning process. 

For (ii)—learning the manner in which variables 
change over time—we use variable order Markov 
models (VMMs) [19]. Given the current value of a 
variable and its history of previous values, a VMM can 
be used to efficiently calculate the set of new values that 
the variable may take next, and their associated 
probabilities. The musician can choose which variables 

are modelled by VMMs and the maximum order of the 
VMMs (i.e. the maximum number of historical values to 
take into account when calculating the probability 
distribution for the next value that the variable will take). 
Higher order models produce sequences closer to those 
found in the set of examples provided by the musician.  

As part of the design process, the musician must 
choose an integer-valued priority for each variable with 
which a VMM is associated. This is necessary for the 
following reason. At performance time, the agent uses 
the VMMs to choose values for the variables with which 
they are associated. As this is done for each variable 
independently, the VMM-chosen values can be 
inconsistent with the ARL-derived rules. When a conflict 
of this kind arises, the VMM-chosen value associated 
with one or more of the variables must be ignored so that 
no rules are broken. The agent uses the variables’ 
priority values to choose which ones will retain their 
VMM-chosen values and which ones will not. Variables 
with high priorities are more likely to retain their VMM-
chosen values in preference over those with low 
priorities. 

2.3. Agent behaviour specification 

To summarise, we list the different elements of an agent 
behaviour specification output by the Agent Designer 
and used by the performer module: 

 
• Music system variables: The attributes of each 

variable associated with the music system. These 
include the domain (the values which the variable 
may take); a flag indicating whether the variable is 
ordinal or categorical (i.e. whether or not the 
values in the domain have an intrinsic numerical 
ordering); a flag indicating whether the variable is 
controllable or not (i.e. whether it is to be 
controlled by the agent, or just used in the decision-
making process); the order of the VMM, if 
necessary; the priority with which the VMM is 
used; and a flag indicating if the value of the 
variable should be output at performance time. 

• Custom variables: The attributes of the custom 
variables, which are additional, musician-specified 
descriptors that are intended to help the machine 
learning algorithms to find salient musical patterns 
(see [14, 16]).  

• Variable order Markov models: The VMMs 
associated with certain variables and custom 
variables, as chosen by the musician. 

• Rules: The set of rules describing the dependencies 
between variables (including custom variables), as 
discovered by the ARL algorithms. 

 
For the purposes of illustration, Figure 1 shows a 

screen-shot of the “Variables” panel from the Agent 
Designer. The panel is used for choosing which variables 
will have VMMs associated with them, and for defining 
custom variables. 

 



 

Figure 1. A screenshot of the Agent Designer. 

3. THE PERFORMER MODULE 

In this section we give details of the performer module. 
We start by describing the procedure which must be 
executed by the module. We then describe our original 
implementation. Finally, we describe its successor, 
which is the new implementation based on binary 
decision diagrams. 

3.1. Algorithm for choosing new parameter values 

The performer module is responsible for choosing new 
values for the music system variables in real-time, 
during a musical performance. In the following, we use 
the term configuration to refer to a particular set of 
values taken on by the music system variables and 
custom variables; and we refer to the set of 
configurations allowed by the rules as the set of allowed 
configurations. When an update of the variables is 
required, the following steps are taken: 
 

I. Values of the uncontrollable variables (those not 
used to control the music system, but which 
describe external musical processes) are read in. 
Then the set of allowed configurations is reduced 
so that it includes only those configurations in 
which the uncontrollable variables have these 
values. 

II. The variables which have associated VMMs are 
iterated over in order of their user-defined 
priorities. For each one (i) a value is chosen from 
the VMM, and (ii) the set of allowed configurations 
is reduced so that it only includes those 
configurations in which the variable has the newly 
chosen value. If there are no allowed configurations 
in which the variable has this value, the set of 
allowed configurations is not changed (i.e. the 
VMM-chosen value is ignored). 

III. A random configuration is drawn from the 
remaining set of allowed configurations, and the 
values of the controllable music system variables 
are output. 

3.2. First implementation 

In the following, we describe how these steps were 
implemented in the performer module used in the first 
version of the Agent Design Toolkit. This will serve to 
introduce some key concepts and motivate the new 
implementation described below.  

In the first version of the toolkit, the set of allowed 
configurations at the beginning of step (I) was 
represented by the set of rules output by the association 
rule learning algorithms (see previous section). Together, 
these rules form a constraint satisfaction problem (CSP; 
see e.g. [1]), which is a problem defined by a set of 
constraints on the values of a set of variables. It is 
possible to use many types of constraints to define a CSP 
including the implies rules discovered by ARL 
algorithms and other types required to define custom 
variables (see previous section). In step (I), when the 
values of the uncontrollable variables were read, they 
were encoded as additional constraints in the CSP. 

During step (II) values are chosen for the parameters 
with which temporal models have been associated. Each 
time a value is drawn from a temporal model, it is 
encoded as a constraint and added to the CSP. Before 
continuing, the CSP is tested to see if it is feasible (i.e. at 
least one solution exists), since it is possible that a value 
has been drawn for a parameter, which does not satisfy 
one or more constraints (thus constraining the parameter 
to have this value would make the CSP infeasible). If the 
CSP has become infeasible, the new constraint is 
removed and no constraint is added for that parameter. If 
not, the new constraint is allowed to remain. A CSP can 
be tested for feasibility—and solved, if a solution 
exists—using a constraint solver: a piece of software 
designed to solve CSPs. The first version of the 
performer module was implemented in Java and a 
constraint solver Java library called Choco 
(www.emn.fr/z-info/choco-solver) was used. 

Finally, in step (III) a random solution is drawn from 
the CSP comprising the constraints corresponding to the 
rules found by the ARL algorithms, as well as those 
corresponding to the values of the uncontrollable 
variables, and those corresponding to the values drawn 
from the temporal models. In the first version of the 
performer module, this was done by using the Choco 
library to find all of the solutions to the CSP and then 
choosing one randomly. 

There were two reasons for our use of a constraint 
solver for the first implementation of the performer 
module. First, the rules discovered by ARL algorithms 
are standard constraints which can be directly used in a 
constraint solver with low development overhead. 
Second, general purpose constraint solvers, including 
Choco, support a wide variety of constraint types. The 
custom variables are implemented using different 
constraints, and in the early development of the Agent 
Design Toolkit, it was unknown which custom variables 
would be included. Thus, it was advantageous to allow 
for many different possibilities by using a general 
purpose constraint solver.  



We have found that the implementation based on the 
Choco constraint solver generally works well with 
agents designed to control a small number of variables, 
or a set of variables with small domains. However, it has 
a serious flaw which arises from the fact that it is 
generally impossible to predict in advance (i) how long it 
will take to solve a CSP and (ii) how many solutions it 
will have (and how much computer memory will be 
required to store them). This means that at any time 
during a musical performance, a CSP may arise for 
which a random solution cannot be found within the time 
limits set by the real-time requirement. This is more 
likely with an agent designed to control many variables, 
or variables with large domains, since the number of 
possible variable configurations grows combinatorially. 
Nevertheless, the key issue is that it is generally 
impossible to predict when a problematic CSP will arise, 
and this makes the constraint-based solution unsuitable 
for live music performance. 

In the next subsection, we describe an alternative way 
to implement steps (I)-(III) above. It involves 
representing the CSP as a binary decision diagram. This 
is a data structure which makes it possible to find 
random solutions to CSPs in a predictable length of time, 
without requiring all of the solutions to be stored. 

3.3. Binary Decision Diagrams 

Binary decision diagrams1 (BDDs) are representations of 
Boolean functions [11] and in this section, we show how 
they can be used for real-time musical decision-making. 
To make use of a BDD, we first transform our CSP into 
a Boolean satisfiability problem (referred to as a SAT 
problem). This can be understood as a CSP in which all 
of the variables are Boolean; they can only take on 
values of true or false. A SAT problem is equivalent to a 
Boolean function (i.e. a function of Boolean variables) 
that gives an output of true if all the constraints are 
satisfied and false otherwise.  

Before continuing, and with reference to our reasons 
for using a general purpose constraint solver in the first 
implementation of the performer module (see Section 
3.2), we note that not all constraints supported by a 
general purpose constraint solver can be readily 
translated to SAT. However, at the time of implementing 
the BDD-based version of the performer module, the set 
of custom variables had been defined so it was known 
that the required constraints could be translated to SAT 
by available tools. 

Once the Boolean function representing the original 
CSP has been created, it can be transformed into a BDD, 
which represents the Boolean function as a directed-
acyclic graph [4]. This two-step process to compute the 
BDD (CSP to SAT, SAT to BDD), can be performed 
offline (i.e. before step (I) above). Once it has been 
completed, it is possible to perform steps (I)-(III) very 
efficiently and in a predictable length of time. This is 

                                                             
 

1 We use this term as it is generally used in the literature to mean 
reduced, ordered binary decision diagrams [11]. 

because the BDD has special properties which make it a 
very attractive representation in the context of real-time 
musical decision-making. Using a BDD, the following 
operations are possible [5, 11]: 

Check if there are any solutions: This is required for 
step (II) above. Using a BDD, it can be performed in 
constant time. 

Count the number of solutions: This is required for 
choosing a random solution. It can be done in O(nB) 
time, where n is the number of variables in the Boolean 
function and B is the number of nodes in the BDD. 

Choose solutions randomly, with all solutions being 
equally likely: This is required for step (III) and it can be 
performed in O(n) time or less. 

Projection: This is the operation whereby the solution 
space can be restricted to one in which extra constraints 
are true, such as when the values of uncontrollable 
variables are read in step (I) and when values are chosen 
for temporally modelled variables in step (II). It can be 
performed in O(B) time. 

All of these operations require the BDD to be 
constructed to begin with. While the process of 
transforming a Boolean function into a BDD can be done 
offline, and therefore is not time-critical, it has two 
pitfalls which we mention here. First, for a given 
Boolean function, the size of the BDD (i.e. the number 
of nodes, B) is very sensitive to the way in which the 
Boolean variables are ordered. A sub-optimal variable 
ordering can lead to a BDD which is much greater in 
size than that which would result from the optimal 
variable ordering. The problem of finding the optimal 
variable ordering is very hard to solve (it is coNP-
complete, in computer science terminology) [11]. 
However, heuristic algorithms exist which can generally 
find reasonably good variable orderings. The second 
pitfall is that some Boolean functions simply cannot be 
compactly represented using a BDD, even if the optimal 
variable ordering is known [11]. However, these 
problems have not prevented BDDs from being 
successfully used in many different problem domains. 

3.4. BDD-based implementation 

We have implemented a BDD-based performer module 
as a plugin for the Max interactive platform 
(www.cycling74.com). It is written in C++. In this 
section, we present the implementation details and 
details of the third party software libraries on which our 
implementation is built. As described in Section 2.4, the 
output of the Agent Design process comprises three 
parts: descriptions of the variables, including the custom 
variables; VMMs for certain variables; and a set of rules 
describing the dependencies between variables. The core 
functionality of performer module is to performs steps 
(I)-(III) above. To do this it requires a BDD representing 
the CSP corresponding to the rules. 

The construction of the BDD from the CSP is a two-
stage process, as described in Section 3.3. The first stage 
of this process (CSP-SAT) is performed by the Agent 
Designer, using the Java-based Sugar CSP library 
(http://bach.istc.kobe-u.ac.jp/sugar/) [22]. The SAT 



representation, along with the agent behaviour 
specification, are loaded into the performer module. The 
performer module is based on the CUDD package 
(http://vlsi.colorado.edu/~fabio/CUDD/) for creating and 
manipulating BDDs (as well as other decision diagrams). 
This is used to convert the SAT representation into a 
BDD at load-time, and to perform the BDD projection 
operations and find random solutions at performance 
time. Though the conversion from SAT to BDD can in 
theory take a long time—and so might better be done as 
a separate, offline process so as not to delay the loading 
of an agent—we have not found it to take very long in 
practise (see next Section). 

4. PERFORMANCE OF THE BINARY DECISION 
DIAGRAM 

In the previous section, we argued that a performer 
module based on a constraint solver was unsuitable for 
live music performance due to its unpredictability. We 
proposed that an implementation based on BDDs is 
superior because the resources (time and computer 
memory) required during performance are more 
predictable. The uncertainty associated with the BDD-
based implementation lies in the conversion from a CSP 
to a BDD which can result in a BDD which is too large 
to solve in real-time. However, it will be known at 
design time (rather than performance time) if an agent 
cannot be used, and if this is the case, steps can be taken 
to alter the agent or find another course of action. 
Furthermore, since BDDs have been used in many other 
applications to greatly improve the speed at which 
constraint problems can be solved, we have reason to 
believe that not only will the BDD-based performer will 
be more predictable, but it will often be much more 
efficient as well. In this section we present results which 
support these arguments. 

To compare the performance of the BDD-based 
performer module with the constraint solver based one, 
repeated measurements were made of the time taken by 
each implementation to update the values of sets music 
system variables. Three different agents were used: they 
were (i) an agent for performing electronic music, 
described in [14]; (ii) an agent for performing 
improvised electroacoustic music, described in [16]; and 
(iii) an agent for performing drum and bass music, also 
described in [16]. The number of variables and rules 

associated with the agents are given in the second and 
third columns of Table 1. Each performer module 
performed with each agent for 1000 variable updates, 
and the times taken to perform the update calculations 
were recorded. The computer used for all measurements 
was a 2007 model Apple Macbook Pro with a 2.4 GHz 
CPU and 4 GB of RAM. 

For each set of 1000 measurements, we calculated the 
normalised standard deviation (i.e. the standard deviation 
divided by the mean) to show the spread of times taken 
in a way that is independent of the time values 
themselves. This gives a good indication of the 
predictability of the time required to perform a variable 
update. In addition, we calculated the mean time taken 
across all 1000 measurements, to compare the efficiency 
of the two implementations.  

The results for each agent as well as the mean across 
all agents, are shown in Table 1, columns 4-7. Clearly, 
the time taken for parameter updates is more predictable 
using the BDD-based performance module for which the 
mean normalised standard deviation of the time per 
update was 0.13 compared 1.33 for the constraint solver 
based implementation. To further illustrate this, we 
include Figure 2, which shows the normalised update 
times for 100 of the 1000 updates performed by each of 
the two performer modules using the electronic music 
agent. In addition, the results show that for each of the 
agents used, the BDD-based performance module was 
much faster than the constraint solver based one (a mean 
time per update of 0.08 ms compared to 75 ms). 

We have not encountered a CSP which resulted in a 
BDD too large for real-time performance. The BDD 
sizes (numbers of binary variables and numbers of 
nodes) are given in Table 1, for each of the three agents 
used for this experiment. Also given in the time taken to 
create the BDD (averaged over 10 trials). The most 
complex agent was the electronic music agent which was 
used to control 102 music system variables (the number 
of variables given includes custom variables). It resulted 
in a BDD with 8262 nodes which took approximately 
14.7 seconds to create from the SAT representation. Our 
results do not show the average time per update growing 
with the BDD size and number of variables. This can be 
attributed to the other variations between agents, such as 
the number of VMM-modelled variables which affects 
the number of BDD operations that must be performed. 



 

Figure 2. Normalised time taken to update variable 
values for the constraint solver and BDD-based 
implementations. 

Finally, we note an additional problem encountered 
using the constraint solver based performer module 
when running the electronic music agent. On occasion, 
the number of solutions to the CSP was too large and 
they could not be stored in memory. This meant that the 
software could not perform the update. For the timing 
measurements shown above, restrictions were added to 
the agent specification to prevent this occurring. That the 
BDD-based implementation allows random solutions to 
be found without calculating and storing all solutions is 
an important advantage. 

These results are consistent with BDD-theory, which 
says the update time required by the performer module 
only depends on the BDD size and the number of 
variables, which do not change during a musical 
performance. This contrasts with the constraint solver 
based implementation for which the update time depends 
on the number of CSP solutions, which can change from 
one update to the next. The results also show that for the 
agents used—which are representative of the agents 
produced by the Agent Designer Toolkit to date—our 
BDD-based performer module is much more efficient 
than the constraint solver based one. Some of this 
increased performance can be attributed to the inherent 
speed difference between Java and C++. In addition, 
there are constraint solvers which are faster than Choco. 
However neither of these factors accounts for the size of 
the performance improvement, particularly for the 
electronic music agent. 
 

5. DISCUSSION 

Considerable research has been done into the application 
of constraint programming (i.e. the use of CSPs and 
constraint solvers) to modelling music theories, both 
traditional and novel (see [2] for a survey). Much of this 
work has focussed on ways to represent music (i.e. a 
musical score) so that constraints of sufficient 
sophistication and musicality can be used. In 
comparison, the block-based representation of musical 
data used in the Agent Design Toolkit is very simple. 
However, in our case constraints are learnt whereas in 
the work surveyed in [2], they are specified by the user. 
Thus, in the Agent Design Toolkit, any constraint-related 
capability must be paired with a corresponding machine 
learning capability and the machine learning problem of 
discovering patterns as complex as those found in the 
theory of classical harmony, for example, is an 
extremely difficult one. Our use of custom variables (see 
Section 2.3, [14] and [16]) is one way in which a 
musician can increase the sophistication and musicality 
of the representation and thereby enhance the ability of 
the machine learning algorithms to find musically salient 
patterns and relationships.  

There has been some research into the use of 
Constraints in real-time, interactive applications [3, 17], 
but only with manually specified constraints on musical 
data. As previously mentioned, it is impossible to know 
in advance, how long a constraint solver will take to find 
a solution. Thus, in [3] where a constraint solver is used 
in a real-time scenario, the workaround is to use a 
timeout which stops the search if a solution cannot be 
found within a specified duration. In contrast, the 
predictability of our BDD-based solver is a great 
advantage in real-time applications. 

5.1. Future work 

To improve the performer module, we plan to investigate 
alternative ways to deal with the possibility that a VMM-
chosen value might not be consistent with the association 
rules. For example, a method has been proposed for 
adjusting the probabilities in a Markov model to account 
for external constraints while still remaining consistent 
with the model [18]. 

In the context of the Agent Designer Toolkit as a 
whole, we plan to carry out a thorough evaluation in an 
upcoming series of user studies. In addition to usability 
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Creation 
Time (s) Con BDD Con BDD 

Electronic [14] 103 500 1.5 0.1 175 0.06 226 8262 14.76 
Electroacoustic [16] 13 26 1.3 0.2 25 0.08 36 1040 0.002 
Drum and Bass [16] 14 18 1.2 0.1 25 0.1 32 291 0.001 

 Mean 1.33 0.13 75 0.08  
 

Table 1. Comparison between the BDD-based performer module (BDD) and the constraint solver based performer 
module (Con) for three autonomous agents. See text for details. 



testing, we will evaluate the toolkit in its capacity as a 
creativity support tool [21] and the extent to which it is 
useful to computer music practitioners in their creative 
work relating to agent design and automation. To this 
end, we have already integrated the toolkit into the 
Ableton Live music production software [16]. 

6. CONCLUSION 

Constraint based systems are a powerful way for 
musicians to make musical decision-making agents. 
Constraints provide a way of formally specifying a set of 
relations between musical elements that can accurately 
capture a musician’s conceptualization of their music. 
However, CSPs are not generative models, meaning that 
although they provide an accurate representation of a set 
of musical constraints, they cannot be used to derive 
musical decisions. In addition, they can be difficult to 
solve in a real-time context. The BDD provides a real-
time generative representation of a CSP an a way that is 
practically useable by musicians. To our knowledge, this 
is the first report on the use of binary decision diagrams 
in a real-time music application. 
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