
IMPLEMENTATION OF A REAL-TIME MUSICAL DECISION-MAKER

Aengus Martin, Craig T. Jin

Computing & Audio Research Lab
Sydney University, NSW 2006, Australia

Oliver Bown

Faculty of Architecture, Design and Planning
Sydney University, NSW 2006, Australia

ABSTRACT

In this paper, we present a novel implementation of a
real-time musical decision-maker. In our scenario, the
behaviour of a musical decision-making agent is
specified as a constraint satisfaction problem. Generally,
constraint satisfaction problems are solved using
methods which are not suitable for real-time musical
performance, because the amount of time they will take
to arrive at a solution is unpredictable. We have
developed a musical decision-making agent which can
solve some musical constraint problems (i) in a
predictable length of time and (ii) usually much more
quickly than alternative methods. It works by using an
efficient data structure called a binary decision diagram
to represent the constraint satisfaction problem.

1. INTRODUCTION

We use the term musical agent to refer to a
computational entity intended to play music either
autonomously or alongside a human performer. The
computer music literature contains many reports on
musical agents (see, e.g. [6] for a review) and a great
variety of algorithms and architectures have been used in
their implementation [10, 12, 20]. Less attention has
been paid to the methodology of designing musical
agents—that is, to the approaches to the design of
musical agents which are not specific to particular music
systems or situations.

We have previously studied a number of approaches
to the creation of tools with which musicians can design
the musical decision-making behaviour of a musical
agent for use in their creative work. We have studied the
use of partially observable Markov decision processes
(POMDPs), whereby a musician can design aspects of an
agent’s behaviour by tuning the reward function of a
POMDP model [13]. In addition, we have studied a
design-by-example approach in which a musician can
specify the behaviour of an agent by supplying examples
of the desired behaviour [15].

In these studies, the focus was on design methods
with two particular characteristics. The first is that they
do not require musicians to be experts at computer
programming or algorithm implementation or
development (though, of course, they may be). The
second is that the musician’s aim is to design agents
which make relatively high-level musical decisions, for
example, the sequencing of musical elements such as
sound samples and short MIDI sequences; or controlling

the parameters of digital audio effects or processes
which generate low-level musical material.

Recently we introduced a toolkit for the design of
musical agents, which was also created with the
aforementioned characteristics in mind [14]. The Agent
Design Toolkit allows a musician to design the behaviour
of a musical agent by first recording some examples of
the desired behaviour and then following an iterative
design process in which the musician can add to, or edit
the examples, as well as adjust the parameters of a set of
machine learning algorithms which learn the musical
patterns in the example data. At each design iteration, an
agent is created, which the musician can audition in
order to decide what modifications to make to the
examples and/or the parameters of the machine learning
algorithms. This paradigm, in which a user interacts with
machine learning algorithms iteratively to arrive at a
satisfactory result, is known as interactive machine
learning [7] and it was first used in the context of
computer music by Fiebrink et al [8].

The Agent Design Toolkit is comprised primarily of
two separate pieces of software. The first is the Agent
Designer, which is used to record examples and run the
machine learning algorithms. Its output is an agent
behaviour specification; a file which specifies the
behaviour of a musical agent. This file is then loaded
into the performer module for real-time use in a musical
performance.

In this paper, we report an a completely new
implementation of the performer module, which is much
more computationally efficient and is capable of
executing far more complex behaviours than was
previously possible with the toolkit. It relies on the use
of a data structure called a binary decision diagram [4],
which can be used to solve certain types of
computational problems much more efficiently than with
alternative methods.

The remainder of this paper is structured as follows.
In Section 2, we give an overview of the Agent Design
Toolkit and how it is used. In Section 3, we describe the
performer module and our new implementation using
binary decision diagrams. In Section 4, we discuss the
performance improvements using the new performer
module. In Section 5, we discuss the Agent Design
Toolkit and its application in the context of other
research, before concluding in Section 6.

2. OVERVIEW OF THE AGENT DESIGN
TOOLKIT

In [14] we describe the Agent Design Toolkit and
discuss a preliminary study of its use. In this section, we
give a detailed overview of the toolkit. This will provide
the context for understanding the issues involved in the
implementation of the performer module.

2.1. Design paradigm

Our goal is to enable the creation of musical decision-
making agents that can be adapted by music practitioners
to their specific creative contexts. In a typical scenario, a
musician has assembled a music system comprising an
ensemble of virtual instruments, digital audio effects and
algorithmic processes, all of which can be parametrically
controlled (i.e. there is a set of variables whose values
determine the output of the music system). An example
of such a system is an Ableton Live project
(www.ableton.com). In this context, the project is the
music system which the musical decision-making agent
will control. The Agent Design Toolkit provides a means
for a music practitioner who is not an expert in
algorithms or computer programming to design the
behaviour of such an agent. The agent’s decision making
process can involve the use of external musical
variables, e.g. incoming MIDI data and therefore the
Agent Design Toolkit can be used to create both
generative and interactive music systems.

2.2. Machine Learning Algorithms

Here, we give an overview of the machine learning
algorithms used in the Agent Design Toolkit to learn the
musical patterns in the example data. Separate machine
learning algorithms are used to model (i) the -
dependencies between the variables which control the
music system and (ii), the manner in which they change
over time. For (i), we use association rule learning
(ARL) algorithms (see, e.g. [9]). These algorithms can
be used to find deterministic rules describing
dependencies between the variables. The rules are in the
form of implies rules. For example, a music system may
have separate variables which control the activity of the
bass drum, the snare drum and the hi-hat, and the
following rule may be discovered:

Bass drum = On, Snare drum = On ! Hi-hat = On

which can be read as “when the bass drum and the snare
drum are sounding, then the hi-hat is sounding too”. The
musician can configure various aspects of the rule
learning process.

For (ii)—learning the manner in which variables
change over time—we use variable order Markov
models (VMMs) [19]. Given the current value of a
variable and its history of previous values, a VMM can
be used to efficiently calculate the set of new values that
the variable may take next, and their associated
probabilities. The musician can choose which variables

are modelled by VMMs and the maximum order of the
VMMs (i.e. the maximum number of historical values to
take into account when calculating the probability
distribution for the next value that the variable will take).
Higher order models produce sequences closer to those
found in the set of examples provided by the musician.

As part of the design process, the musician must
choose an integer-valued priority for each variable with
which a VMM is associated. This is necessary for the
following reason. At performance time, the agent uses
the VMMs to choose values for the variables with which
they are associated. As this is done for each variable
independently, the VMM-chosen values can be
inconsistent with the ARL-derived rules. When a conflict
of this kind arises, the VMM-chosen value associated
with one or more of the variables must be ignored so that
no rules are broken. The agent uses the variables’
priority values to choose which ones will retain their
VMM-chosen values and which ones will not. Variables
with high priorities are more likely to retain their VMM-
chosen values in preference over those with low
priorities.

2.3. Agent behaviour specification

To summarise, we list the different elements of an agent
behaviour specification output by the Agent Designer
and used by the performer module:

• Music system variables: The attributes of each

variable associated with the music system. These
include the domain (the values which the variable
may take); a flag indicating whether the variable is
ordinal or categorical (i.e. whether or not the
values in the domain have an intrinsic numerical
ordering); a flag indicating whether the variable is
controllable or not (i.e. whether it is to be
controlled by the agent, or just used in the decision-
making process); the order of the VMM, if
necessary; the priority with which the VMM is
used; and a flag indicating if the value of the
variable should be output at performance time.

• Custom variables: The attributes of the custom
variables, which are additional, musician-specified
descriptors that are intended to help the machine
learning algorithms to find salient musical patterns
(see [14, 16]).

• Variable order Markov models: The VMMs
associated with certain variables and custom
variables, as chosen by the musician.

• Rules: The set of rules describing the dependencies
between variables (including custom variables), as
discovered by the ARL algorithms.

For the purposes of illustration, Figure 1 shows a

screen-shot of the “Variables” panel from the Agent
Designer. The panel is used for choosing which variables
will have VMMs associated with them, and for defining
custom variables.

Figure 1. A screenshot of the Agent Designer.

3. THE PERFORMER MODULE

In this section we give details of the performer module.
We start by describing the procedure which must be
executed by the module. We then describe our original
implementation. Finally, we describe its successor,
which is the new implementation based on binary
decision diagrams.

3.1. Algorithm for choosing new parameter values

The performer module is responsible for choosing new
values for the music system variables in real-time,
during a musical performance. In the following, we use
the term configuration to refer to a particular set of
values taken on by the music system variables and
custom variables; and we refer to the set of
configurations allowed by the rules as the set of allowed
configurations. When an update of the variables is
required, the following steps are taken:

I. Values of the uncontrollable variables (those not
used to control the music system, but which
describe external musical processes) are read in.
Then the set of allowed configurations is reduced
so that it includes only those configurations in
which the uncontrollable variables have these
values.

II. The variables which have associated VMMs are
iterated over in order of their user-defined
priorities. For each one (i) a value is chosen from
the VMM, and (ii) the set of allowed configurations
is reduced so that it only includes those
configurations in which the variable has the newly
chosen value. If there are no allowed configurations
in which the variable has this value, the set of
allowed configurations is not changed (i.e. the
VMM-chosen value is ignored).

III. A random configuration is drawn from the
remaining set of allowed configurations, and the
values of the controllable music system variables
are output.

3.2. First implementation

In the following, we describe how these steps were
implemented in the performer module used in the first
version of the Agent Design Toolkit. This will serve to
introduce some key concepts and motivate the new
implementation described below.

In the first version of the toolkit, the set of allowed
configurations at the beginning of step (I) was
represented by the set of rules output by the association
rule learning algorithms (see previous section). Together,
these rules form a constraint satisfaction problem (CSP;
see e.g. [1]), which is a problem defined by a set of
constraints on the values of a set of variables. It is
possible to use many types of constraints to define a CSP
including the implies rules discovered by ARL
algorithms and other types required to define custom
variables (see previous section). In step (I), when the
values of the uncontrollable variables were read, they
were encoded as additional constraints in the CSP.

During step (II) values are chosen for the parameters
with which temporal models have been associated. Each
time a value is drawn from a temporal model, it is
encoded as a constraint and added to the CSP. Before
continuing, the CSP is tested to see if it is feasible (i.e. at
least one solution exists), since it is possible that a value
has been drawn for a parameter, which does not satisfy
one or more constraints (thus constraining the parameter
to have this value would make the CSP infeasible). If the
CSP has become infeasible, the new constraint is
removed and no constraint is added for that parameter. If
not, the new constraint is allowed to remain. A CSP can
be tested for feasibility—and solved, if a solution
exists—using a constraint solver: a piece of software
designed to solve CSPs. The first version of the
performer module was implemented in Java and a
constraint solver Java library called Choco
(www.emn.fr/z-info/choco-solver) was used.

Finally, in step (III) a random solution is drawn from
the CSP comprising the constraints corresponding to the
rules found by the ARL algorithms, as well as those
corresponding to the values of the uncontrollable
variables, and those corresponding to the values drawn
from the temporal models. In the first version of the
performer module, this was done by using the Choco
library to find all of the solutions to the CSP and then
choosing one randomly.

There were two reasons for our use of a constraint
solver for the first implementation of the performer
module. First, the rules discovered by ARL algorithms
are standard constraints which can be directly used in a
constraint solver with low development overhead.
Second, general purpose constraint solvers, including
Choco, support a wide variety of constraint types. The
custom variables are implemented using different
constraints, and in the early development of the Agent
Design Toolkit, it was unknown which custom variables
would be included. Thus, it was advantageous to allow
for many different possibilities by using a general
purpose constraint solver.

We have found that the implementation based on the
Choco constraint solver generally works well with
agents designed to control a small number of variables,
or a set of variables with small domains. However, it has
a serious flaw which arises from the fact that it is
generally impossible to predict in advance (i) how long it
will take to solve a CSP and (ii) how many solutions it
will have (and how much computer memory will be
required to store them). This means that at any time
during a musical performance, a CSP may arise for
which a random solution cannot be found within the time
limits set by the real-time requirement. This is more
likely with an agent designed to control many variables,
or variables with large domains, since the number of
possible variable configurations grows combinatorially.
Nevertheless, the key issue is that it is generally
impossible to predict when a problematic CSP will arise,
and this makes the constraint-based solution unsuitable
for live music performance.

In the next subsection, we describe an alternative way
to implement steps (I)-(III) above. It involves
representing the CSP as a binary decision diagram. This
is a data structure which makes it possible to find
random solutions to CSPs in a predictable length of time,
without requiring all of the solutions to be stored.

3.3. Binary Decision Diagrams

Binary decision diagrams1 (BDDs) are representations of
Boolean functions [11] and in this section, we show how
they can be used for real-time musical decision-making.
To make use of a BDD, we first transform our CSP into
a Boolean satisfiability problem (referred to as a SAT
problem). This can be understood as a CSP in which all
of the variables are Boolean; they can only take on
values of true or false. A SAT problem is equivalent to a
Boolean function (i.e. a function of Boolean variables)
that gives an output of true if all the constraints are
satisfied and false otherwise.

Before continuing, and with reference to our reasons
for using a general purpose constraint solver in the first
implementation of the performer module (see Section
3.2), we note that not all constraints supported by a
general purpose constraint solver can be readily
translated to SAT. However, at the time of implementing
the BDD-based version of the performer module, the set
of custom variables had been defined so it was known
that the required constraints could be translated to SAT
by available tools.

Once the Boolean function representing the original
CSP has been created, it can be transformed into a BDD,
which represents the Boolean function as a directed-
acyclic graph [4]. This two-step process to compute the
BDD (CSP to SAT, SAT to BDD), can be performed
offline (i.e. before step (I) above). Once it has been
completed, it is possible to perform steps (I)-(III) very
efficiently and in a predictable length of time. This is

1 We use this term as it is generally used in the literature to mean
reduced, ordered binary decision diagrams [11].

because the BDD has special properties which make it a
very attractive representation in the context of real-time
musical decision-making. Using a BDD, the following
operations are possible [5, 11]:

Check if there are any solutions: This is required for
step (II) above. Using a BDD, it can be performed in
constant time.

Count the number of solutions: This is required for
choosing a random solution. It can be done in O(nB)
time, where n is the number of variables in the Boolean
function and B is the number of nodes in the BDD.

Choose solutions randomly, with all solutions being
equally likely: This is required for step (III) and it can be
performed in O(n) time or less.

Projection: This is the operation whereby the solution
space can be restricted to one in which extra constraints
are true, such as when the values of uncontrollable
variables are read in step (I) and when values are chosen
for temporally modelled variables in step (II). It can be
performed in O(B) time.

All of these operations require the BDD to be
constructed to begin with. While the process of
transforming a Boolean function into a BDD can be done
offline, and therefore is not time-critical, it has two
pitfalls which we mention here. First, for a given
Boolean function, the size of the BDD (i.e. the number
of nodes, B) is very sensitive to the way in which the
Boolean variables are ordered. A sub-optimal variable
ordering can lead to a BDD which is much greater in
size than that which would result from the optimal
variable ordering. The problem of finding the optimal
variable ordering is very hard to solve (it is coNP-
complete, in computer science terminology) [11].
However, heuristic algorithms exist which can generally
find reasonably good variable orderings. The second
pitfall is that some Boolean functions simply cannot be
compactly represented using a BDD, even if the optimal
variable ordering is known [11]. However, these
problems have not prevented BDDs from being
successfully used in many different problem domains.

3.4. BDD-based implementation

We have implemented a BDD-based performer module
as a plugin for the Max interactive platform
(www.cycling74.com). It is written in C++. In this
section, we present the implementation details and
details of the third party software libraries on which our
implementation is built. As described in Section 2.4, the
output of the Agent Design process comprises three
parts: descriptions of the variables, including the custom
variables; VMMs for certain variables; and a set of rules
describing the dependencies between variables. The core
functionality of performer module is to performs steps
(I)-(III) above. To do this it requires a BDD representing
the CSP corresponding to the rules.

The construction of the BDD from the CSP is a two-
stage process, as described in Section 3.3. The first stage
of this process (CSP-SAT) is performed by the Agent
Designer, using the Java-based Sugar CSP library
(http://bach.istc.kobe-u.ac.jp/sugar/) [22]. The SAT

representation, along with the agent behaviour
specification, are loaded into the performer module. The
performer module is based on the CUDD package
(http://vlsi.colorado.edu/~fabio/CUDD/) for creating and
manipulating BDDs (as well as other decision diagrams).
This is used to convert the SAT representation into a
BDD at load-time, and to perform the BDD projection
operations and find random solutions at performance
time. Though the conversion from SAT to BDD can in
theory take a long time—and so might better be done as
a separate, offline process so as not to delay the loading
of an agent—we have not found it to take very long in
practise (see next Section).

4. PERFORMANCE OF THE BINARY DECISION
DIAGRAM

In the previous section, we argued that a performer
module based on a constraint solver was unsuitable for
live music performance due to its unpredictability. We
proposed that an implementation based on BDDs is
superior because the resources (time and computer
memory) required during performance are more
predictable. The uncertainty associated with the BDD-
based implementation lies in the conversion from a CSP
to a BDD which can result in a BDD which is too large
to solve in real-time. However, it will be known at
design time (rather than performance time) if an agent
cannot be used, and if this is the case, steps can be taken
to alter the agent or find another course of action.
Furthermore, since BDDs have been used in many other
applications to greatly improve the speed at which
constraint problems can be solved, we have reason to
believe that not only will the BDD-based performer will
be more predictable, but it will often be much more
efficient as well. In this section we present results which
support these arguments.

To compare the performance of the BDD-based
performer module with the constraint solver based one,
repeated measurements were made of the time taken by
each implementation to update the values of sets music
system variables. Three different agents were used: they
were (i) an agent for performing electronic music,
described in [14]; (ii) an agent for performing
improvised electroacoustic music, described in [16]; and
(iii) an agent for performing drum and bass music, also
described in [16]. The number of variables and rules

associated with the agents are given in the second and
third columns of Table 1. Each performer module
performed with each agent for 1000 variable updates,
and the times taken to perform the update calculations
were recorded. The computer used for all measurements
was a 2007 model Apple Macbook Pro with a 2.4 GHz
CPU and 4 GB of RAM.

For each set of 1000 measurements, we calculated the
normalised standard deviation (i.e. the standard deviation
divided by the mean) to show the spread of times taken
in a way that is independent of the time values
themselves. This gives a good indication of the
predictability of the time required to perform a variable
update. In addition, we calculated the mean time taken
across all 1000 measurements, to compare the efficiency
of the two implementations.

The results for each agent as well as the mean across
all agents, are shown in Table 1, columns 4-7. Clearly,
the time taken for parameter updates is more predictable
using the BDD-based performance module for which the
mean normalised standard deviation of the time per
update was 0.13 compared 1.33 for the constraint solver
based implementation. To further illustrate this, we
include Figure 2, which shows the normalised update
times for 100 of the 1000 updates performed by each of
the two performer modules using the electronic music
agent. In addition, the results show that for each of the
agents used, the BDD-based performance module was
much faster than the constraint solver based one (a mean
time per update of 0.08 ms compared to 75 ms).

We have not encountered a CSP which resulted in a
BDD too large for real-time performance. The BDD
sizes (numbers of binary variables and numbers of
nodes) are given in Table 1, for each of the three agents
used for this experiment. Also given in the time taken to
create the BDD (averaged over 10 trials). The most
complex agent was the electronic music agent which was
used to control 102 music system variables (the number
of variables given includes custom variables). It resulted
in a BDD with 8262 nodes which took approximately
14.7 seconds to create from the SAT representation. Our
results do not show the average time per update growing
with the BDD size and number of variables. This can be
attributed to the other variations between agents, such as
the number of VMM-modelled variables which affects
the number of BDD operations that must be performed.

Figure 2. Normalised time taken to update variable
values for the constraint solver and BDD-based
implementations.

Finally, we note an additional problem encountered
using the constraint solver based performer module
when running the electronic music agent. On occasion,
the number of solutions to the CSP was too large and
they could not be stored in memory. This meant that the
software could not perform the update. For the timing
measurements shown above, restrictions were added to
the agent specification to prevent this occurring. That the
BDD-based implementation allows random solutions to
be found without calculating and storing all solutions is
an important advantage.

These results are consistent with BDD-theory, which
says the update time required by the performer module
only depends on the BDD size and the number of
variables, which do not change during a musical
performance. This contrasts with the constraint solver
based implementation for which the update time depends
on the number of CSP solutions, which can change from
one update to the next. The results also show that for the
agents used—which are representative of the agents
produced by the Agent Designer Toolkit to date—our
BDD-based performer module is much more efficient
than the constraint solver based one. Some of this
increased performance can be attributed to the inherent
speed difference between Java and C++. In addition,
there are constraint solvers which are faster than Choco.
However neither of these factors accounts for the size of
the performance improvement, particularly for the
electronic music agent.

5. DISCUSSION

Considerable research has been done into the application
of constraint programming (i.e. the use of CSPs and
constraint solvers) to modelling music theories, both
traditional and novel (see [2] for a survey). Much of this
work has focussed on ways to represent music (i.e. a
musical score) so that constraints of sufficient
sophistication and musicality can be used. In
comparison, the block-based representation of musical
data used in the Agent Design Toolkit is very simple.
However, in our case constraints are learnt whereas in
the work surveyed in [2], they are specified by the user.
Thus, in the Agent Design Toolkit, any constraint-related
capability must be paired with a corresponding machine
learning capability and the machine learning problem of
discovering patterns as complex as those found in the
theory of classical harmony, for example, is an
extremely difficult one. Our use of custom variables (see
Section 2.3, [14] and [16]) is one way in which a
musician can increase the sophistication and musicality
of the representation and thereby enhance the ability of
the machine learning algorithms to find musically salient
patterns and relationships.

There has been some research into the use of
Constraints in real-time, interactive applications [3, 17],
but only with manually specified constraints on musical
data. As previously mentioned, it is impossible to know
in advance, how long a constraint solver will take to find
a solution. Thus, in [3] where a constraint solver is used
in a real-time scenario, the workaround is to use a
timeout which stops the search if a solution cannot be
found within a specified duration. In contrast, the
predictability of our BDD-based solver is a great
advantage in real-time applications.

5.1. Future work

To improve the performer module, we plan to investigate
alternative ways to deal with the possibility that a VMM-
chosen value might not be consistent with the association
rules. For example, a method has been proposed for
adjusting the probabilities in a Markov model to account
for external constraints while still remaining consistent
with the model [18].

In the context of the Agent Designer Toolkit as a
whole, we plan to carry out a thorough evaluation in an
upcoming series of user studies. In addition to usability

0 20 40 60 80 1000

1

2

3

4

5

Update #

N
or

m
al

is
ed

 ti
m

e
ta

ke
n

Constraint solver
BDD

Agent # Vars # Rules
Normalised

Std. Dev.
Mean time per

update (ms) # Binary
Variables

BDD
Nodes

BDD
Creation
Time (s) Con BDD Con BDD

Electronic [14] 103 500 1.5 0.1 175 0.06 226 8262 14.76
Electroacoustic [16] 13 26 1.3 0.2 25 0.08 36 1040 0.002
Drum and Bass [16] 14 18 1.2 0.1 25 0.1 32 291 0.001

 Mean 1.33 0.13 75 0.08

Table 1. Comparison between the BDD-based performer module (BDD) and the constraint solver based performer
module (Con) for three autonomous agents. See text for details.

testing, we will evaluate the toolkit in its capacity as a
creativity support tool [21] and the extent to which it is
useful to computer music practitioners in their creative
work relating to agent design and automation. To this
end, we have already integrated the toolkit into the
Ableton Live music production software [16].

6. CONCLUSION

Constraint based systems are a powerful way for
musicians to make musical decision-making agents.
Constraints provide a way of formally specifying a set of
relations between musical elements that can accurately
capture a musician’s conceptualization of their music.
However, CSPs are not generative models, meaning that
although they provide an accurate representation of a set
of musical constraints, they cannot be used to derive
musical decisions. In addition, they can be difficult to
solve in a real-time context. The BDD provides a real-
time generative representation of a CSP an a way that is
practically useable by musicians. To our knowledge, this
is the first report on the use of binary decision diagrams
in a real-time music application.

7. ACKNOWLEDGEMENTS

We would like to thank Nina Narodytska and Toby
Walshe for their thoughtful and helpful advice.

8. REFERENCES

[1] Apt, K.R. Principles of Constraint Programming.
2003, Cambridge University Press.

[2] Anders, T. and Miranda, M.R., “Constraint
programming systems for modeling music theories
and composition”, ACM Comput. Surv., 2011.
43(4): pp. 30:1-30:38.

[3] Anders, T. and Miranda, M.R., “Constraint-based
composition in realtime”, in Proc. ICMC, Belfast,
Northern Ireland, 2008.

[4] Bryant, R.E., “Graph-based algorithms for Boolean
function manipulation”, IEEE T. Comput., 1986.
C-35(8): pp. 677-691.

[5] Darwiche, A., Marquis, P., “A knowledge
compilation map”, J. Artif. Intell. Res., 2002. 17:
pp. 229-264.

[6] Drummond, J., “Understanding interactive
systems”, Organised Sound, 2009. 14(2): pp. 124-
133.

[7] Fails, J.A. and Olsen, Jr., D.R., “Interactive
Machine Learning”, in Proc. International
Conference on Intelligent User Interfaces, Miami,
USA, 2003, pp. 39-45.

[8] Fiebrink, R., Cook, P.R. and Trueman, D., “Human
model evaluation in interactive supervised
learning”, in Proc. CHI, Vancouver, Canada, 2011,
pp. 147-156.

[9] Hastie, T., Tibshirani, R. and Friedman, J. The
Elements of Statistical Learning, 2nd Edition. 2009,
New York: Springer.

[10] Hsu, W., “Two approaches for interaction
management in timbre-aware improvisation
systems”, in Proc. ICMC, Belfast, Northern
Ireland, 2008.

[11] Knuth, D.E. The Art of Computer Programming,
Volume 4A: Combinatorial Algorithms, Part 1.
2011, Upper Saddle River, New Jersey: Addison-
Wesley.

[12] Lewis, G., “Too many notes: Computers,
complexity and culture in voyager”, Leonardo
Music J., 2000. 10: pp. 33-39.

[13] Martin, A., Jin, C., van Schaik, A. and Martens,
W.L., “Partially observable Markov decision
processes for interactive music systems”, in Proc.
ICMC, New York, USA, 2010, pp. 480-493.

[14] Martin, A., Jin, C.T. and Bown, O., “A toolkit for
designing interactive musical agents”, in Proc.
OZCHI, Canberra, Australia, 2011, pp. 194-197.

[15] Martin, A., McEwan, A., Jin, C.T. and Martens,
W.L., “A similarity algorithm for interactive style
imitation”, in Proc. ICMC, Huddersfield, UK,
2011, pp. 571-574.

[16] Martin, A., Jin, C.T., Carey, B. and Bown, O..
“Creative Experiments Using a System for
Learning High-Level Performance Structure in
Ableton Live”, in Proc. SMC, Copenhagen,
Denmark, 2012.

[17] Pachet, F. and Delerue, O., “Midispace: a temporal
constraint-based music spatializer”, in Proc. ACM
International Conference on Multimedia, Bristol,
UK, 1998, pp. 351-359.

[18] Pachet, F., Roy, P. and Barbieri, G., “Finite-length
Markov processes with constraints”, in Proc.
IJCAI, Barcelona, Spain, 2011, pp. 635-642.

[19] Ron, D., Singer, S. and Tishby, N., “The power of
amnesia: Learning probabilistic automata with
variable memory length”, Mach. Learn., 1996. 25:
pp. 113-149.

[20] Rowe, R. Interactive music systems. 1993,
Cambridge, MA: MIT Press.

[21] Shneiderman, B., “Creativity support tools:
accelerating discovery and innovation”,
Commun. ACM, 2007. 50(12): pp. 20-32.

[22] Tamura, N., Taga, A., Kitagawa, S. and Banbara,
M., “Compiling finite linear CSP into SAT”,
Constraints, 2009. 14: pp. 254-272.

